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Abstract 

This thesis addresses the problem of feature selection for developing vision-based 

applications for intelligent transportation systems. The aim is to establish an efficient 

and robust framework for feature selection to guide the development of vision-based 

applications for intelligent transportation systems.  

Traditional traffic surveillance relies on monitoring by human operators. The 

developments of computer vision techniques and traffic cameras provide new 

solutions. Intelligent vision-based applications can work continuously without rest, 

which allows them to monitor and manage the traffic more efficiently than human 

beings. To understand the correlation and mechanism between these applications fully, 

we categorise all of the applications into four vision-based cognitive systems, 

specifically, vehicle, pedestrian, driver, and traffic infrastructure.  

Similar to the human cognitive system, cognitive systems in intelligent transportation 

systems recognise objects and events based on features. Feature selection is extremely 

critical for achieving good performance. However, this task presents a considerable 

challenge because an intelligent transportation system usually contains a complicated 

environment, multiple objects, and an unstable background. Previous studies have 

indicated that feature selection is usually performed at random and without 

convincing reasons. To address this problem, we originally propose an efficient 

framework for feature selection to guide the development of cognitive systems in 

intelligent transportation systems. More specifically, our framework includes the 

scheme of maximum dependency and minimum redundancy. The first scheme guides 

us to select a feature candidate set such as low-level, high-level, or hybrid features; 

next, the cognitive system targets such as vehicles, pedestrians, drivers, or roads with 

a system performance requirement that is evaluated in terms of the accuracy, 

processing speed and robustness. Subsequently, the scheme of minimum redundancy 

helps us to select the optimal feature subset from the candidate set by analysing the 

correlations among the group of features.  

In the remainder of this work, we focus on the integration of feature selection 

schemes into real-world cognitive systems for intelligent transportation. Vehicles are 

the primary road users. Vehicle surveillance is one of the most important components 
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of an intelligent transportation system. Using the proposed framework of feature 

selection, a vehicle classification system with roadside cameras is proposed. As 

another main road user, pedestrians have different attributes, such as irregular shapes 

and frequent occlusions. A pedestrian detection and counting system is developed 

with the guidance of the framework of feature selection. Additionally, intelligent 

vehicles are important cognitive systems in an intelligent transportation system. With 

a monocular camera installed on the front of a vehicle, the front vehicle on the road is 

detected, and its pose is estimated simultaneously. This system progresses toward 

being a better driver assistant in the future. Finally, we propose an inference bag-of-

features model that selects the optimal feature subset. We demonstrate the advances 

of this proposed model through testing on an extremely challenging task: gender 

classification based on face recognition.  

These aforementioned cognitive systems are the most important and essential 

components of intelligent transportation systems. Each system is a complex system 

rather than a single task. For example, in a vehicle type classification system, license 

plate detection and vehicle front extraction are considered together before classifying 

the types of vehicles. The proposed schemes for feature selection that are applied 

during the overall procedure for each system and the advantages of our feature 

selection schemes are shown next.  

Throughout this work, focussed emphasis is placed on performing a thorough 

performance evaluation for both the methodology and the real-world datasets. Several 

datasets that are used in this thesis have been made publicly available for further 

research in this field. Our results indicate that a significant improvement in 

performance is achieved by using our feature selection methods. This thesis concludes 

with a critical analysis of the work and an outlook for future research opportunities.   

  

 

 

 

 



Chapter 1 Introduction 

In recent years, the ever-increasing need for mobility has overflowed in major cities in 

the form of vehicles and pedestrians, which has resulted in growing traffic congestion 

accompanied by reduced efficiency in the transportation infrastructure, increased 

travel time, air pollution, fuel consumption, unpredicted emergencies, and accidents. 

These facts reflect the dramatic inefficiencies of transportation systems. Hence, the 

development of systems for more efficient and safer mobility is urgently required. 

 

To tackle this problem, there are three main countermeasures, worldwide: 

infrastructure improvement, policy adjustment and intelligent transportation systems 

(ITSs). Infrastructure improvement comprises grade separation, which uses bridges or 

tunnels to free movements from having to stop for other crossing movements, local-

express lanes that provide through-lanes that bypass junction on-ramp and off-ramp 

zones, limited-access roads that limit the types and numbers of driveways along their 

lengths, and more techniques. Policy adjustment includes parking restrictions that 

make use of motor vehicles by increasing the cost of parking and road pricing that 

charges money for accessing a road/specific area at certain times or at certain 

congestion levels or for certain road users. Obviously, improving the infrastructure is 

necessary while developing a society or community. However, good traffic conditions 

that are created by improved infrastructure can exist only for a short period of time 

because the increase in the number of traffic users never stops. Nevertheless, 

infrastructure cannot be improved forever. At the same time, policy adjustment is only 

a makeshift approach to addressing the traffic problem over a short period of time 

with administrative means, and it cannot touch the heart of the matter. Nevertheless, 

the aim of the ITS is to provide innovative services that are related to different modes 

of transport, and traffic management could help us to efficiently address the traffic 

problem.  

1.1 Computer vision in intelligent transportation system 

The aim of an ITS is to develop more efficient and safer transportation. ITSs are 

composed of innovative and cost-effective mobile services and applications that 

incorporate electronic, computer, and communication technologies into vehicles and 

roads for monitoring traffic conditions, reducing congestion, detecting accidents, and 
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more tasks (Figueiredo, Jesus et al. 2001) (Wang, Herget et al. 2005). Transportation 

resonates as both a means of communication and a powerful metaphor for 

communication (Carey 2009). Other scholars have established the foundation for this 

type of analysis by calling attention to the increased information and automated 

regulation of spaces and practices (Hommels 2005) (Wood and Graham 2006). 

Recently, researchers have attempted to apply findings from the area of cognitive 

networks to the field of ITSs (Dimitrakopoulos and Demestichas 2010) (Ryan, Daniel 

et al. 2006). This application can be facilitated by exploiting cognitive networking 

principles. The “cognitive” aspect incorporates a spectrum of cognitive behaviours, 

from goal-based decisions to proactive adaption when applied to communication 

technologies. The term cognitive, as used in this thesis, follows in the footsteps of the 

definition used in (Dimitrakopoulos and Demestichas 2010). We associate cognitive 

systems with machine learning, which is a set of algorithms that can retain knowledge 

from past interactions with the environment, transform this knowledge into 

experience, and plan future actions accordingly. By introducing cognitive systems 

into an ITS, we obtain adaptability to new traffic contexts, which facilitates 

cooperation and also addresses complexity by developing transportation management 

mechanisms that have learning capabilities. These systems enable prior perceived 

potential and, accordingly, amend behaviour with respect to traffic.  

 

Fig. 1.1 Cognitive systems among vehicles, drivers, pedestrians, and 

infrastructure, which are the four main nodes in an intelligent transportation 

system. 
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Cognitive systems in an ITS offer functionality that is capable of exploiting the 

intelligence that is accumulated through the exchange of information among nodes, 

such as vehicles, drivers, pedestrians, and traffic control centres. From this viewpoint, 

we can recognise that the most distinguishable difference between an ITS and 

traditional transportation is communication and decision making transfers, 

transitioning from methods that require human intervention to an automatic system. 

Cognitive systems improve the performance and also the reliability of communication 

and decision making. As shown in Fig. 1.1, an ITS comprises four nodes: vehicles, 

drivers, pedestrians and infrastructure, including roads, traffic signs, traffic lights and 

traffic control centres. The whole ITS is composed of all of these cognitive systems, 

each of which works between every pair of nodes. As shown in Fig. 1.2, the operation 

of a cognitive system that is placed between two adjacent nodes can be reflected in a 

feedback loop. The system first retrieves context information such as vehicles, 

pedestrians, velocities and positions of neighbouring vehicles. Through the analysis of 

this information, while considering its own preferences, goals, and policies, the 

system decides on its actions, such as issuing a directive toward a traffic control 

centre to change the traffic light or sending an instruction to a driver to change the 

vehicle’s direction. More importantly, the output of the system is stored in a 

knowledge database for future reference. The system keeps track of its actions, learns 

from its actions and facilitates future decisions. This scenario is repeated in a machine 

learning (Bishop 2006) process that leads to cognition. The aforementioned 

knowledge and experience is learned while the system runs. Moreover, the knowledge 

can be learned “offline” and/or can be improved after the system runs.  

  

 

Fig. 1. 2  Operation procedure of each cognitive system. 
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Referring to Fig. 1.2, we require the help of sensors for information retrieval and 

knowledge learning in the cognitive system between two nodes. As shown in Fig. 1.3, 

the majority of sensors can be categorised into two groups: active sensors and passive 

sensors (Hebert 2000). Active sensors, such as radar-based (Park, Kim et al. 2003), 

laser-based (Wang, Thorpe et al. 2003) (Hancock, Hoffman et al. 1998), and acoustic-

based (Chellappa, Gang et al. 2004) sensors are called active because they can detect 

the distance to an object by measuring the travel time of a signal that is emitted by a 

sensor and reflected by the object. The main advantage of active sensors against 

passive sensors is that they can measure a certain distance directly without requiring a 

powerful computing resource. However, with the rapid development of hardware and 

computational ability, it is not obvious that there is an advantage to the active sensors. 

Nevertheless, active sensors suffer from serious drawbacks that they are expensive to 

install and maintain. Visual sensors, such as cameras, are usually referred to as 

passive sensors because they acquire data in a nonintrusive way. Visual sensors offer 

a relatively low installation cost and cause little traffic disruption during maintenance. 

Furthermore, they capture much more information than active sensors. With the 

information that is acquired by the active sensors, we can implement multiple tasks, 

such as the analysis of traffic flows and turning movements, speed measurements, 

multiple-point vehicle counts, vehicle classification and road state assessments.  

  

 

Fig. 1.3 Sensors used in an intelligent transportation system. According to the 

mechanism of receiving information, the sensors are divided into two groups: 

active sensors and passive sensors. 
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Fig. 1.4 The cognitive system helps deriver to have a better understanding of the 

environment. LightSpeed display shows information on the windscreen. © 

LightBlueOptics. 

 

With respect to the 4 nodes in Fig. 1.1, we are going to demonstrate some applications 

to show the importance of computer vision in an ITS. In the cognitive system between 

the vehicle and traffic control centre, the images/videos of vehicles are captured by 

surveillance cameras; they are analysed automatically and then sent to the traffic 

control centre to aid in suitable decision making. License plate recognition (Jia, Zhang 

et al. 2007) (Peng, Xu et al. 2011) (Duan, Duc et al. 2004) and vehicle type 

classification (Petrovic and Cootes 2004) (Peng, Jin et al. 2012) (Peng, Jin et al. 2013) 

are typical applications. With computer vision techniques, vehicles as primary road 

users can perceive the infrastructure, with road lane detection (Paetzold and Franke 

2000) (Wang, Chung et al. 2004) (Kluge 1994) and traffic sign recognition (Negri, 

Clady et al. 2008) (Soetedjo and Yamada 2005) (Hoferlin and Zimmermann 2009), 

using an on-board camera. As another road user, pedestrians can also use the help of 

visual sensors to understand the infrastructure. For example, with the help of location 

information and a smart mobile camera, a good solution for finding a perfect 

rendezvous is proposed in (Liu, Mei et al. 2012). Similarly, the traffic control centre 

usually detects pedestrians and even analyses the motion of pedestrians (Peng, Xu et 

al. 2012) (Pai, Tyan et al. 2004) (Besbes, Rogozan et al. 2010), using a surveillance 

camera. Drivers who sit in vehicles can recognise the environment by themselves. 

However, they still can use the help of visual sensors to enhance and accelerate the 

perceptions between them and other nodes in the ITS. To allow drivers to perceive the 

road environment better, Light Blue Optics proposed a technique, which is Light 



14 

 

Speed (Optics 2012), as shown in Fig. 1.4, to display vital information such as speed, 

road warnings and GPS information at an apparent distance of 2.5 meters from the 

driver’s eyes. The display appears to be floating off the end of the vehicle’s bonnet, 

reducing the need for drivers to shift their focus from the road ahead. On the other 

hand, computer vision is also useful in recognition between drivers and vehicles. To 

detect driver inattention, such as distractions and fatigue, computer vision 

measurements are widely applied (Yanchao, Zhencheng et al. 2011). Moreover, 

recognising pedestrians and other vehicles on the road using computer vision has 

become very attractive recently. In (Enzweiler and Gavrila 2008), an on-board camera 

observed the road ahead for possible collisions with pedestrians. In (Peng, Xu et al. 

2012), the accurate 3D position of the front vehicle is estimated via an on-board 

camera.   

1.2  Feature selection for an intelligent transportation system  

From the aforementioned analysis, we note the importance of computer vision in all 

of the cognitive systems of the ITS. Computer vision stimulates or enhances the 

functions of the human vision system (Nixon and Aguado 2012). In human vision, the 

sensing element is the eye, from which images are transmitted via the optic nerve to 

the brain, for further processing. The optic nerve has insufficient bandwidth to 

conduct all of the information that is sensed by the eye. Accordingly, there must be 

some pre-processing to discard non-useful information while keeping important 

information before the image is transmitted to the optic nerve. Similarly, as shown in 

Fig. 1.2, it is not necessary to send all of the context information, namely, 

images/videos captured by cameras, to analyse and learn. We must select and extract 

from all of the features of the images or videos, to describe the characteristics of our 

objects. Feature selection removes irrelevant, redundant, or noisy data, and brings 

about immediate effects for applications: speeding up an algorithm or improving the 

application performance, such as the predictive accuracy and result comprehensibility 

(Huan and Lei 2005).   

As shown in Fig. 1.5, feature selection is composed of two stages—feature candidate 

set selection and feature sub-set selection. In the first stage, we select a feature 

candidate set. Usually, we divide all of the features applied in an ITS into three 

groups—low-level features, high-level features, and hybrid features. 
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Fig. 1.5 Two steps of feature selection: feature type selection and feature subset 

selection. Through these two steps, the best representative features can be 

extracted for objects of interest. 

 

According to the definition in (Nixon and Aguado 2012), low-level features are those 

basic features that can be extracted automatically from an image without any shape 

information (information about spatial relationships). First, low-level feature 

extraction, including edge detection, phase congruency, corner-based extraction (such 

as Moravec and Harris detectors), region/patch analysis (such as scale-invariant 

feature transforms (SIFT) (Lowe 2004)) and speeded-up robust features (SURF) (Bay, 

Ess et al. 2008). Second, high-level feature extraction finds out shapes and objects in 

images and videos. The methods are template matching, parts-based shape analysis, 

active contours and shape skeletonisation. Finally, we utilise hybrid features in some 

ITS applications, which are a combination of low-level features and high-level 

features. Obviously, no feature is universally suitable. Different types of features were 

chosen in different applications. For example, SIFT, a low-level feature, was chosen 

in (Peng, Luo et al. 2012) to classify gender with a Bag-of-Features (BoF) framework. 

(Peng, Xu et al. 2012) chose several statistical features, such as high-level features, to 

describe the spatial characteristics of pedestrian groups. (Peng, Xu et al. 2011) utilised 

a combination of line segment features and Haar-like features, as hybrid features, in a 

license plate localisation system.  

The selected feature candidate set is not sufficient to achieve the best performance for 

ITS cognitive systems. To use the most discriminative features to describe targets, we 

must select an optimal subset of features. In fact, there are two types of methods for 

selecting the optimal subset—the filter model and the wrapper model. The filter 

model relies on general characteristics of the data to evaluate and select feature 

subsets with pre-determined criteria. For example, in the traditional Principal 
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Component Analysis (PCA) (Jolliffe 2005) method, a pre-defined number of 

eigenvectors were selected to build up the eigenspace. The wrapper model is usually a 

procedure of iterative evaluation. It requires some mining algorithms and uses their 

performance as the evaluation criteria. For example, RANdom SAmple Consensus 

(RANSAC) (Fischler and Bolles 1981) discarded outliers while searching for inliers 

and is better suited to the mining algorithm, which aims to improve the performance 

(such as the classification rate).  

Identifying the optimal set of features is extremely important. Using most of the 

discriminative information that is contained in this optimal set, the most accurate 

model can be calculated to represent the target for classification, localisation, or 

recognition. It is worth noting that having the optimal amount of information (to attain 

the best accuracy) is important because either more or less information would 

deteriorate the performance. 

1.3 Applications  

Despite the inferiority of vision-based cognitive systems compared with human vision 

and the severe methodological challenges and performance demands, one of the key 

questions is to determine the performance that is deemed to be necessary to deploy a 

vision-based cognitive system in an ITS. Although there are limitations in terms of the 

recognition performance, artificial systems have an advantage over humans in that 

they do not fatigue, are always vigilant and can possible react in a small fraction of a 

second.  

There are many applications and existing commercial systems, as shown in Fig. 1.6. 

We are specifically interested in the applications of feature selection in the cognitive 

systems that are in an ITS.  

Applications include surveillance cognitive systems, in which a camera looks down a 

street. For example, feature selection methods are widely applied in vehicle detection 

and classification systems (WebSource 2012). 

According to the deployment environment in which the surveillance cameras are 

installed and the camera angle, different feature selection methods are applied to 

avoid adverseness, such as the occlusion between densely spaced vehicles. License  
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Fig. 1.6 Commercial products of visual based cognitive systems in an ITS. 

 

plate recognition is another well-researched application that is based on feature 

selection. There is a series of companies, e.g., (WebSource 2012) and (WebSource 

2012), which provide solutions for tolling, congestion charging, and vehicle 

identification. Because license plates are usually very small within the whole image, 

features should be carefully chosen, to obtain the best performance on both 

localisation and recognition. In addition to the surveillance cognitive system, another 

application area is intelligent vehicles, specifically, a vehicle cognitive system, where 

an on-board camera watches the road ahead for possible collisions with pedestrians 

and other vehicles (e.g., Mercedes-Benz E-Class 2009, BMW 7 series 2008 and Audi 

A8 2010)) or monitors the driver for inattention. Because of the different 

characteristics of different objects, such as walking pedestrians, vehicles and drivers, 

various features are selected.   

All of the previously mentioned applications would significantly benefit from more 

advanced feature selection methods for cognitive systems, to improve their 

performance and to address a wider range of scenarios in ITSs. 



Chapter 2 Methodology 

2.1 Analyse an ITS in terms of its cognitive system 

In the aforementioned analysis, computer vision and video analytics become 

increasingly important in ITSs, and there has been an increased scope for the 

automatic image/video analysis of urban traffic activity. There has been a large 

number of surveys of the studies in this area. However, most of these surveys focus 

on specific aspects of vision-based applications in an ITS, such as video surveillance 

or vision-based intelligent vehicles. As shown in Table 2.1, we organised 

representative surveys over the past decade.  

All of these surveys focus on specific applications of an ITS rather than providing 

summaries from the methodology viewpoint that can guide future work in this field. 

For example, (Gelmose, Trivedi et al. 2012) provided a survey of the traffic sign 

detection literature, detailing systems of traffic sign recognition for driver assistance 

in an ITS, while (Yanchao, Zhencheng et al. 2011) focused on another part of the 

ITS—driver inattention monitoring, such as for distraction and fatigue. 

Table 2. 1. Survey papers of computer vision in intelligent transportation 

systems over the past decade. 

Year Title Focus  Cognitive systems 

in an ITS 

2012 Vision-Based Traffic Sign 

Detection and Analysis for 

Intelligent Driver Assistance 

Systems Perspectives and Survey 

(Gelmose, Trivedi et al. 2012) 

Traffic sign detection and 

analysis  

Infrastructure to 

Vehicle 

2011 A Review of Computer Vision 

Techniques for the Analysis of 

Urban Traffic (Buch, Velastin et al. 

2011) 

Vehicle detection, 

vehicle tracking and 

vehicle classification 

Infrastructure to 

Vehicle 

2011 Driver Inattention Monitoring 

System for Intelligent Vehicles: A 

Review (Yanchao, Zhencheng et al. 

Driver inattention such as 

distraction and fatigue 

Vehicle to Driver 
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2011) detection 

2009 Vehicular Communication Systems 

Enabling Technologies 

Applications and Future Outlook 

on Intelligent Transportation 

(Papadimitratos, La Fortelle et al. 

2009) 

Roadside and on-board 

equipment 

communication 

Vehicle to Vehicle  

2009 Monocular Pedestrian Detection 

Survey and Experiments 

(Enzweiler and Gavrila 2009) 

Pedestrian detection 

using an on-board 

camera 

Vehicle to 

Pedestrian 

2008 Study of Robust and Intelligent 

Surveillance in Visible and 

MultiModal Framework (Kumar, 

Mittal et al. 2008) 

Pedestrian detection 

using a distributed 

surveillance system 

Infrastructure to 

Pedestrian  

2008 Inter Vehicle Communication 

Systems a Survey (Sichitiu and 

Kihl 2008) 

Communication systems 

between vehicles 

Vehicle to Vehicle 

2006 On Road Vehicle Detection: A 

Review (Sun, Bebis et al. 2006) 

Vehicle detection using 

an on-board camera 

Vehicle to Vehicle  

2005 Intelligent Distributed Surveillance 

Systems: A Review (Valera and 

Velastin 2005) 

Objects, especially 

pedestrian, detection and 

analysis using a 

distributed system  

Infrastructure to 

Pedestrian 

2003 Detecting Moving Shadows 

Algorithms and Evaluation (Prati, 

Mikic et al. 2003) 

Detecting and removing 

shadows using a road-

side surveillance camera  

Infrastructure to 

Infrastructure 

2003 A Survey of Video Processing 

Techniques for Traffic Application 

(Kastrinaki, Zervakis et al. 2003) 

Detecting lanes and 

objects using a road-side 

surveillance camera or an 

on-board camera 

Infrastructure to 

Infrastructure, 

Infrastructure to 

Vehicle 
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As shown in Fig. 1.1, from the viewpoint of considering cognitive systems in an ITS, 

all of this review work fell into one of the cognitive systems among the four “nodes”: 

infrastructure, vehicle, pedestrian and driver. The operation of a cognitive system 

placed between two nodes can be reflected in a feedback loop, as explained in 

Chapter 1. 

The cognitive system between a vehicle and driver usually retrieves the information 

on the driver by the camera or other sensors that are installed inside a vehicle, to 

evaluate the state of the driver and, accordingly, make a decision. (Yanchao, 

Zhencheng et al. 2011) presented a comprehensive review of current technology for 

monitoring driver inattention, which includes distraction and fatigue. For example, by 

recognising a driver’s face, Fan et al. (Fan, Sun et al. 2010) constructed a classifier 

for fatigue detection; by measuring the pressure distribution on the seat of male 

subjects using simulated long-term driving, Furugori et al. (Furugori, Yoshizawa et al. 

2005) showed good results on fatigue detection. The authors of (Yanchao, Zhencheng 

et al. 2011) demonstrated that combining a driver’s physical measurements with 

driving performance measures can intuitively increase the inattention detection 

confidence. In addition to drivers, vehicles can communicate with other nodes 

through the cognitive system as well. In the cognitive system between a vehicle and a 

pedestrian, an on-board camera watches the road ahead for possible collisions with 

pedestrians (Enzweiler and Gavrila 2009). With the camera fixed on the roadside, 

vehicles (Buch, Velastin et al. 2011) and pedestrians (Kumar, Mittal et al. 2008) were 

detected and analysed for traffic management. At the same time, transport 

infrastructure such as road lanes (Prati, Mikic et al. 2003) and traffic signs (Gelmose, 

Trivedi et al. 2012) were recognised by vehicles through the cognitive system 

2002 The Development of Machine 

Vision for Road Vehicles in The 

Last Decade (Dickmanns 2002) 

Intelligent vehicle  Vehicle to the other 

three nodes 

2002 Building Safer Cars (Jones 2002) Intelligent vehicle Vehicle to the other 

three nodes 

2002 Artificial Vision in Road Vehicles 

(Bertozzi, Broggi et al. 2002) 

Intelligent vehicle Vehicle to the other 

three nodes 
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between them. Moreover, a cognitive system between vehicles is also popular in ITSs. 

Inter-vehicle communication systems (Papadimitratos, La Fortelle et al. 2009) 

demonstrated the potential for radically improving the safety, efficiency, and comfort 

of everyday road travel. Using a camera mounted on the vehicle, the cognitive system 

detected the front vehicle on the road and issued a directive to the drivers to make the 

correct decision (Sun, Bebis et al. 2006). Some concepts of intelligent vehicles were 

proposed in (Bertozzi, Broggi et al. 2002) (Dickmanns 2002) (Jones 2002). These 

intelligent vehicles communicated with pedestrian, driver, infrastructure and other 

vehicles in ITSs through cognitive systems. 

2.2 Efficient feature selection scheme for an ITS 

To make appropriate decisions, these aforementioned vision-based cognitive systems 

must receive information from the environment by using cameras and, then, analyse 

and recognise them. The objective in a complex environment could be located and 

analysed by a human vision system with little effort, whereas this task is extremely 

challenging for cognitive systems in ITSs. Noise is one of the primary hardships. In 

general, image noise means random variation in the brightness or colour information 

in images, which is usually an aspect of electronic noise. This type of noise is always 

produced by the sensor and circuitry of the digital camera. In this thesis, a broader 

concept of noise is preferred—any “unwanted information” is regarded as noise. The 

“wanted information” depends on specific applications. For example, the objective of 

a pedestrian counting system (Peng, Xu et al. 2012) was to count pedestrians only. 

Any other information, such as tree branches, traffic signs and vehicles, are noise. In 

contrast, vehicles rather than pedestrians constituted the “wanted information” for a 

vehicle type classification system (Peng, Jin et al. 2012). To enhance the accuracy of 

the analysis and recognition performance in the cognitive system, reducing noise 

while retaining the objective information is critical.     

In all of the cognitive systems in an ITS, feature selection is a significant step toward 

identifying the most characteristic features of the captured data (images or videos). In 

this thesis, we propose efficient feature selection schemes for vision-based cognitive 

systems in an ITS via feature dependency and feature redundancy analysis. Given the 

input data   and the task performance variable  , the feature selection problem is to 

find   and a subspace of   features from the M-dimensional feature space 
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               , in such a way as to optimally characterise  . The task 

performance could be determined by the classification accuracy ( ), robustness ( ) 

and processing speed ( ).   

         ) 

                                                    (2.1) 

To achieve the maximum  , we need the optimal   and  . This problem becomes 

which types of features and which subsets of features we must choose, therefore, to 

maximise the performance of the cognitive systems in the ITS. Here,   is determined 

by weighted performance requirements. Different ITS applications have different 

performance requirements. Obviously, a high accuracy is always desired. Some 

applications, such as intelligent vehicle systems (Peng, Xu et al. 2012), strictly require 

real-time processing. At the same time, other applications, such as a vehicle 

classification system (Peng, Jin et al. 2012), do not have a restrict real-time 

requirement. Therefore, we could compromise some speed for high-accuracy features 

in an ITS system. Attention should be paid to robustness in various environments for 

developing applications such as urban traffic systems, where changing weather and 

complex streets have a substantial effect on the performance. On the other hand, some 

applications, such as vision-based access control systems, are implemented in a 

relatively stable environment. In such cases, robustness is not the priority.  

2.2.1 Maximum dependency  

Existing feature selection methods mainly focus on finding an optimal subset of 

features (John, Kohavi et al. 1994) (Kohavi and John 1997) (Kwak and Choi 2002) 

(Peng, Long et al. 2005). The analysis of feature type selection is always ignored. In 

this thesis, we define feature dependency and feature redundancy. Based on the 

analysis of feature dependency and redundancy, a new framework of feature selection 

is introduced that decouples feature type selection and feature subset selection.  

In the previous analysis, the optimal performance often means a weighted summation 

of the accuracy, processing time, and robustness. In an unsupervised situation in 

which the classifier is not specified, high accuracy and speed processing usually 

require the maximal statistical dependency of the target   on the data distribution. 
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This scheme has maximal dependency, which means that the best performance 

usually requires the maximal dependency of the suitable features on a specific target. 

In the pedestrian counting system (Peng, Xu et al. 2012), the authors utilised some 

shape-related features, such as the width, height, and foreground pixel distribution to 

characterise moving blobs and to indicate the number of pedestrians in each moving 

blob. The experiments demonstrated promising performance. However, these features 

cannot achieve good results in other cognitive systems in an ITS. For example, facial 

expression recognition in the aforementioned driver fatigue detection system needed 

other features, such as Gabor features (Fan, Sun et al. 2010), to describe the face, 

which was much more subtle than the techniques used in the pedestrian recognition 

problem.  

Dependency is usually characterised in terms of mutual information, which is one of 

the widely used measures to define dependency among variables (Peng, Long et al. 

2005). Given two random variables   and  , their mutual information is defined in 

terms of their probabilistic density functions    )    ), and      ): 

     )         )   
      )

   )    )
                                      (2.2) 

In the scheme of maximum dependency, the selected features    are required, 

individually, to have the largest mutual information        )  with the target  , 

reflecting the largest dependency on the target  . Obviously, a set of features (M) 

rather than a single feature would be utilised. The dependency formula takes the form 

of: 

     )         )   
      )

   )    )
     

               )   
             )

           )    )
                 (2.3) 

In the analysis in (Peng, Long et al. 2005), it is very difficult to obtain an accurate 

estimation for the multivariate density            ) and             ) because the 

multivariate density estimation often involves computing the inverse of the high-

dimensional covariance matrix, which is usually an ill-posed problem.  
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In an ITS, the types of targets and utilised features are usually limited. Target   could 

be the vehicle, pedestrian, road, and traffic sign. Feature   could be edge-based 

features, patch-based features, or shape-based features. Rather than calculating the 

mutual information between the feature and target directly, we establish the 

relationship between the features and target through the analysis of the feature 

characteristics. Via feature analysis, we categorise all of the features that are applied 

in the ITS into three groups: low-level features, high-level features and hybrid 

features. This thesis discusses these three groups of features and reviews their 

applications in cognitive systems in ITSs in Chapter 3. The analysis of the 

characteristics of the features guides us to select suitable feature types for applications. 

In the end, a candidate set of features is chosen via the evaluation in terms of the 

performance  . Therefore, the scheme of maximum dependency has the following 

form: 

           )                                               (2.4) 

   ,     , and    stand for low-level features, high-level features, and hybrid 

features, respectively.  

2.2.2 Minimum redundancy  

After selecting the candidate set of features, feature subset selection is applied to 

reduce the number of features. In theory, more features could provide more 

discriminating power, but in practice, with a limited amount of training data, 

excessive features not only will significantly slow down the learning and testing 

process but will also cause the classifier to over-fit the training data because the 

redundant features could confound the learning process (Guyon and Elisseeff 2003) 

(Yang and Pedersen 1997) (Yu and Liu 2004) (Dash and Liu 1997). In other words, a 

vision-based system can work more efficiently and effectively with non-redundant 

features.  

In (2.1), we have explained that the best performance is a function of the most 

suitable types of features and an optimal set of features, which includes the most 

informative features while excluding the redundant features. The scheme of maximum 

dependency guides us to select the most suitable types of features in the ITS. It has 

been recognised that the combinations of individually good features do not 
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necessarily lead to good classification performance. In other words, “the m best 

features are not the best m features” (Cover and Thomas 2006) (Webb 2003). As 

shown in Fig. 2.1, the maximum-dependent features are selected with the scheme of 

maximum dependency from low-level, high-level, or hybrid features. However, there 

are redundant features that exist in these dependent features. Our aim is to identify the 

optimal subset, which is the set of “max-dependent and min-redundant features”, as 

shown in Fig. 2.1. To select the optimal subset of the features, we introduce the 

scheme of minimum redundancy.  

 

Fig. 2.1 The relationship between dependent features and redundant features. 

Our aim is to identify the optimal subset, which is the set of max-dependent and 

mini-redundant features. 

 

In the scheme of maximum dependency, we select the candidate set of features 

through analysing the correlation among the features (low-level features, high-level 

features, and hybrid features), targets (vehicles, license plates, pedestrians, roads, and 

traffic signs), and performance requirements (accuracy, processing time, and 

robustness). In the scheme of minimum redundancy, we select the optimal subset of 

features via revealing the correlation between any pair of features. The basic 
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mechanism is that when two features depend highly on one another, the respective 

class-discriminative power would not change much if one of them was removed.  

 

 

Fig. 2.2 Feature subset selection algorithms are combination of search strategies 

and evaluation criteria. 

 

Referring to the mutual information formula (2.2), we propose the following minimal 

redundancy formula to select the optimal subset of   features : 

      )   ∑        )                                (2.5) 

General feature subset selection algorithms are a combination of search strategies and 

evaluation criteria, as shown in Fig. 2.2. Depending on the search starting point and 

the search strategies, the categories are complete search, sequential search, and 

random search. A complete search guarantees finding the optimal result according to 

the evaluation criterion through an exhaustive search (Narendra and Fukunaga 1977). 

Most sequential search methods are variations of the greedy hill-climbing approach, 

such as sequential forward selection, sequential backward elimination, and 

bidirectional selection (Liu and Motoda 1998). This strategy is faster than the 

previous strategy because it does not retain the goal of searching set completely. For 

the same reason, however, it risks losing the optimal subsets. Random search starts 

awith a randomly selected subset and generates the next subset in a completely 

random manner, such as in the Las Vegas algorithm (Cormen, Leiserson et al. 2001). 

At the same time, evaluation criteria broadly fall into two categories: the filter model 

(Dash, Choi et al. 2002) (Yu and Liu 2003) and the wrapper model (Das 2001) (Xing, 
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Jordan et al. 2001). The filter model evaluates the quality of a feature subset by 

exploiting the intrinsic characteristics of the training data without involving a mining 

algorithm. These characteristics include distance, information, dependency, and 

consistency. For example, in our previous work (Peng, Park et al. 2010), we utilised 

information entropy as measurement for selecting 9 features with large entropy values, 

to detect cervical nuclei clusters. The wrapper model requires a predetermined 

algorithm and uses its performance as the evaluation criterion. For example, in the 

task of clustering (Peng, Jin et al. 2012), the wrapper model evaluated the quality of a 

feature subset by the quality of the clusters that resulted from applying the clustering 

algorithm.  

We present a hybrid scheme that combines search strategies and evaluation criteria for 

selecting optimal feature subsets efficiently. Our scheme solves the feature selection 

problem without including filter steps. Therefore, the scheme does not compromise 

either the accuracy or speed. The scheme of minimum redundancy organises the 

feature subset selection into three stages.  

Stage 1: This stage guides the global search in a feature candidate space. Usually, 

search strategies are utilised through the feature candidate space. Every new subset is 

accepted at this stage to include as many features as possible. 

Stage 2: This stage employs optimisation. The main purpose of this stage is to obtain 

possible optimal feature subsets that are optimal in terms of their performance. 

Through the evaluation of accuracy, processing time, and robustness, good solutions 

are converged on rapidly.  

Stage 3: This stage applies a local search to the k-best solutions that are given in Stage 

2. The algorithms perform local searches on the k-best solutions and select the best 

features for minimising the redundancy of the feature subset.  

Suitable feature candidates   are determined by the scheme of maximum dependency. 

Depending of the feature candidates   and the performance requirements   for 

specific cognitive systems in an ITS, general feature subset selection methods are 

adapted and improved. In the next chapter, we will review popular methods for 

feature subset selection in ITS.  
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2.3 Implementing the feature selection scheme  

The goal of our thesis is to design an efficient scheme to select the best features for a 

vision-based cognitive system in an ITS. In Section 2.2, we proposed an efficient 

feature selection scheme of maximum dependency and minimum redundancy. A 

remaining issue is how to implement this scheme in the development of ITS cognitive 

systems.  

Under the guidance of a proposed feature selection scheme, we present a two-stage 

implementation framework. In the first stage, we find a suitable candidate feature set 

with the scheme of maximum dependency. To select the candidate feature set for a 

vision-based cognitive system in an ITS, we fully analyse the correlations among 

different features (low-level features, high-level features, and hybrid features), targets 

in cognitive systems (vehicles, license plates, pedestrians, and traffic signs), and the 

performance requirements of a cognitive system (accuracy, processing time, and 

robustness). In the second stage, we search for a compact feature subset from the 

candidate feature set via the scheme of minimum redundancy. With the idea of 

removing redundant features, many sophisticated methods that combine search 

strategies, and evaluation criteria can be used to acquire the compact feature subsets 

from the candidate set that was selected in the first stage. To achieve the best 

compactness, however, we must analyse the characteristics of specific features. 

In the following chapters, the feature selection scheme and general two-stage 

implementation framework will guide us in developing several vision-based cognitive 

systems in ITSs. The significance and advantages of our scheme will be demonstrated 

in these real-world systems.  

 

 

 

 

 



Chapter 3 Related work about feature selection 

In Chapter 1, we introduced cognitive systems in ITSs and the significance of feature 

selection in the successful development of these cognitive systems. We explained the 

challenge of feature selection and briefly reviewed the current feature selection 

methods in Chapter 2. In addition, we proposed the feature selection scheme for 

visual cognitive systems in an ITS. In this Chapter, we will provide a comprehensive 

review of feature selection. First, we discuss feature selection in general terms. 

Subsequently, the previous work about feature type selection and feature subset 

selection, which pertains to our proposed feature selection scheme for ITSs, is 

reviewed comprehensively.  

3.1 Feature selection in general terms  

Feature selection has been an active and fruitful field of research and development for 

decades and is a multidisciplinary joint effort from data mining (Dash and Liu 1997) 

(Dash, Choi et al. 2002) (Kim, Street et al. 2000), machine learning (Hall 1999) 

(Sebastiani 2002) (Sun, Todorovic et al. 2010), and statistics (Saeys, Inza et al. 2007) 

(Vasconcelos and Vasconcelos 2009). A successful choice of feature selection has 

been proven in both theory and practice to effectively enhance the learning efficiency 

while increasing the predictive accuracy and reducing the complexity of the learned 

results. Feature selection widely applies to many fields, such as text categorisation, 

image retrieval, customer relationship management, intrusion detection, and genomic 

analysis. Feature selection champions turning mountains of data into nuggets as well 

as reducing irrelevant information.  

Feature selection was considered to be a process that selects a subset of the original 

features; it reduces the number of features, removes irrelevant, redundant, or noisy 

data, and has immediate implications to applications: speedup of the data mining 

algorithms and improvements in the mining performances, such as predictive 

accuracy and result comprehensibility. There is a vast body of available feature 

selection methods. In (Jain and Zongker 1997), feature selection algorithms were 

categorised into two groups, statistical pattern recognition (SPR) techniques and those 

using artificial neural networks (ANN), as shown in Fig. 3.1. The techniques of the 

SPR category find an optimal set of features, which the classifiers are trained on later. 
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The SPR category was further split into Deterministic methods (Pudil, Novovičová et 

al. 1994) and Stochastic methods (Siedlecki and Sklansky 1989). Deterministic 

methods must decide the starting point, which in turn influences the feature search 

direction. There are two approaches: forward methods that start with the empty set 

and add features; and backward methods that start with the full set and delete features. 

Stochastic methods start with a randomly selected subset of features and follow a 

sequential search or generate the next subset in a completely random manner. On the 

other hand, ANN methods, such as Node Pruning (Kearns and Mansour 1998), 

simultaneously develop both the optimal feature set and the optimal classifier. The 

node-pruning-based feature selection methodology first trains a network and, then, 

removes the least salient node (input or hidden). The reduced network is trained again, 

followed by removal of the least salient node. This procedure is repeated until the 

desired trade-off between the classification error and the size of the network is 

achieved.  

 

Fig. 3.1 A taxonomy of feature selection algorithms. 

 

In (Liu and Yu 2005) (Liu, Dougherty et al. 2005), the general procedure of feature 

selection was described as having four key steps; feature subset generation, subset 

evaluation, stopping criteria, and result validation, as shown in Fig. 3.2.   

The feature subset was generated by a process of heuristic search, with each state in 

the search space specifying a candidate subset for evaluation. The nature of this 

process was in the feature subset search strategies. For a data set with N features, 

there are 2
N
 candidate subsets. This search space was exponentially prohibitive for an 

exhaustive search with even a moderate N.  
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Fig. 3.2 Four key steps of the feature selection procedure. 

 

There were three common search strategies: the complete search, the sequential 

search, and the random search. A complete search, such as branch and bound 

(Narendra and Fukunaga 1977) (Chen 2003) and beam search (Gupta, Doermann et al. 

2002), could find the optimal subset of features much more quickly than an 

exhaustive search according to the evaluation criterion used. One drawback was that 

these procedures usually require the feature selection criterion function to be 

monotonous. A sequential search constituted a sequential forward search, a sequential 

backward search, and bidirectional selection. The sequential search methods were 

usually fast in performance but gave up completeness and thus risked losing optimal 

subsets. A random search generated subsets in a random manner. It helped to escape 

local optima in the search space, but the use of randomness risked missing the most 

optimal subset.  

The second step was subset evaluation, in which the subset generated in the first step 

must be evaluated to assess optimality by an evaluation criterion. This step was the 

core of the general feature selection procedure. The generated subset in the first step 

was the input for this step, the consequences of which are displayed in the third and 

fourth step. The evaluation criteria included a filter model (Dash, Choi et al. 2002) 

(Hall 2000) (Yu and Liu 2003) and a wrapper model (Dy and Brodley 2000) (Kim, 

Street et al. 2000). The filter model relied on the general characteristics of the data to 

evaluate the selected feature subsets without involving any mining algorithm. Some 

popular independent criteria were the distance measure, which attempts to find the 

features that can separate the classes as much as possible, an information measure, 

which determines the optimal features according to the information gain of the 

features, a correlation measure, which measures the similarity between the features, 
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and a consistency measure, which attempts to find the minimum number of features 

that separate classes as consistently as the full set of features can. The wrapper model 

required a predetermined mining algorithm in the feature selection and determined the 

optimality by applying the mining algorithm on the selected features. It was argued 

that, compared to the filter model, the wrapper model was remarkably universal and 

simple. Filter models selected subsets of features as a pre-processing step of the whole 

task, independent of the chosen predictor. At the same time, wrapper models utilised 

the learning machine of interest as a black box to score subsets of features according 

to their predictive power.  

Based on the criteria chosen in the second step, an evaluation was started. A stopping 

criterion in the third step determined when the generation and evaluation process 

should stop. Once the feature subset selection stopped, the selection was validated by 

monitoring the change in the task performance with the change in the features. These 

two steps were often heuristic and depended on specific tasks. For example, in 

clustering applications, we used a number of heuristic criteria, such as cluster 

compactness and scatter separability, for estimating the quality of the clustering 

results; in classification applications, we usually used the classification error rate as a 

performance indicator.  

3.2 Related work about feature type selection 

3.2.1 Feature type selection in general terms 

Feature selections are usually utilised with machine learning techniques. Moreover, 

the central problem in machine learning is to identify a representative set of features 

from which to construct a recognition model for a specific task. Machine learning 

maps inputs to desired outputs. However, machine learning would not address the raw 

data directly because of the very large amount of information and its associated noise. 

Feature selection plays the role of providing a bridge between the raw data and the 

outputs. Pre-processing the data to obtain a smaller set of representative features 

while retaining the optimal salient characteristics of the data not only decreases the 

processing time but also leads to more compactness of the models learned and to 

better generalisation. When the outputs (which are also called labels) are unknown, 

unsupervised machine learning is appropriate. However, very large amounts of data 
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are required for unsupervised learning methods. In (Le, Ranzato et al. 2012), with a 

dataset of 10 million 200×100 pixel images downloaded from the Internet, the authors 

trained a face detector using model parallelism and asynchronous stochastic gradient 

descent (SGD) on a cluster with 1,000 machines for three days. The trained detector 

obtained 81.7% accuracy in recognising a test set that was composed of 37,000 image 

samples, which include more than 13,026 face images; this finding is a substantial 

improvement over the previous state-of-the-art methods. Nevertheless, with prior 

knowledge of the domain, we can achieve an even better result by labelling the 

training samples with a much lower computational capability and a much smaller 

training set.  

In ITSs, the number of objects of interest is limited. As analysed in the first and 

second chapters, we usually focus on the roads, vehicles, license plates, drivers, traffic 

signs and pedestrians. Prior knowledge can help substantially in machine learning and 

can guide us in feature selection as well. We will focus on the feature selection and 

associated supervised machine learning.  

As described in the general procedure of feature selection, most feature selection 

methods treat features as variables without considering the environment of the 

application and the domain knowledge. For example, both SIFT and HOG features are 

represented by vectors with multiple dimensions, to describe images. The 

performances would be significantly different even if we use the exactly identical 

feature selection procedure for different tasks. The art of data mining starts with the 

design of appropriate data representations. Building a feature representation is an 

opportunity to incorporate domain knowledge into the data and can be very 

application-specific (Guyon and Elisseeff 2003). Better performance is often achieved 

through using an appropriate feature type.  

Therefore, it is necessary to integrate the original feature set generation into the whole 

procedure of feature selection. This thesis discusses and analyses the feature selection 

in ITSs with the consideration of an appropriate feature type. In view of our proposed 

feature selection scheme, feature types in ITSs are comprehensively reviewed in terms 

of low level, high level, and hybrid in the next section.  
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3.2.2 Feature type selection for an ITS 

By considering the accuracy, robustness and processing time, different features are 

selected in the cognitive systems in an ITS. Via the analysis of feature characteristics, 

we group features that are applied in ITSs into three groups: low-level features, high-

level features and hybrid features. Some cognitive systems, such as face identification 

and vehicle manufacture classification, must detect and recognise subtle details. Low-

level features are always extracted from the objects, such as faces and vehicle fronts 

in these cases. However, the extraction and analysis of low-level features are usually 

much more time-consuming than for high-level features. Some cognitive systems 

strictly require an instant reaction. For this reason, high-level features are always 

applied, such as in vehicle counting and pedestrian counting systems, which cannot 

afford much processing time. Moreover, some studies have shown that a combination 

of low-level features and high-level features can take advantage of both of these types 

of features. In the following sections, we will present a comprehensive analysis of 

these three groups of features and review their applications in ITS cognitive systems. 

3.2.2.1 Low-level features  

 

Fig. 3.3 Applications in intelligent transportation systems that use low-level 

features. 
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Low-level features were defined in (Nixon and Aguado 2012) to be those basic 

features that can be extracted from an image without any information about the spatial 

relationships. As such, thresholding was actually a form of low-level feature 

extraction, as a point operation. It was well known that we can recognise people from 

caricaturists’ portraits, which is similar to edge detection in computer vision, as 

shown in Fig. 3.3 (a). There have been many edge detectors that are based on first-

order or higher-level differentiation. An alternative form of edge detection is called 

phase congruency, which was an analysis in the frequency domain, as shown in Fig. 

3.3 (b). Moreover, there is another set of low-level features called localised features, 

which extend from curvatures such as Harris corners to patches such as SIFT, as 

shown in Fig. 3.3 (c). All of these features were used on images or video frames. 

Moreover, dynamic analyses of objects in video were essential in ITS cognitive 

systems as well. Low-level feature analysis, such as Gaussian Mixture Models 

(GMMs) and optical flow estimation, were applied to describe the motion, as shown 

in Fig. 3.3 (d) and Fig. 3.3 (e). Usually, these features were not applied individually in 

ITS cognitive systems. A combination of these features was used for locating 

pedestrians, classifying vehicles, and detecting road lanes. Consider a vehicle moving 

on the road, for which the edges were the frame of the vehicle; the corners were the 

apices, and the flow was how the vehicle moves. All of these features can be collected 

together to detect and recognise the moving vehicle. The low-level features in an ITS 

are summarised in Table 3.1.  

Table 3. 1 Summary of low-level features. 

Low-level 

features  

Instances 

Edge First-order edge (Sobel, Prewitt); Second-order edge (Laplacian, 

difference of Gaussian) 

Phase 

Congruency 

Frequency domain analysis 

Localised feature Harris corner, Scale Invariant Feature Transform(SIFT), Speeded Up 

Robust Features(SURF) 

Motion analysis Gaussian Mixture Model(GMM), optical flow 
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Pixel  

 

Fig. 3.4 Shadows of a vehicle and a pedestrian. Shadows always occur in 

intelligent transportation systems, where images are captured in outdoor 

environment. 

 

Thresholding is selecting pixels that have a particular value or are within a specified 

range. It can be used to find objects within a picture if their brightness level (or range) 

is known. This implies that object’s brightness must be known as well.  There were 

two main forms: uniform and adaptive thresholding. Uniform thresholding clearly 

required knowledge of the intensity level, or the target features might not be selected 

in the thresholding process. As the environment was complex and lighting changes 

much in ITS, the intensities of objects in an image varied very often. Uniform 

thresholding was rarely applied in the cognitive systems in ITS. Adaptive 

thresholding, as a more advanced technique, sought a value for the threshold that 

separated an object from its background.  

One successful application of adaptive thresholding in ITS was shadow removal. 

Shadow detection and removal was an important task in cognitive systems in ITS, 

where all images and videos were captured in an outdoor environment. Shadows cast 

by vehicles or pedestrians together with the objects formed distorted figures. 

Furthermore, separate objects can be connected through shadows, which always 

happened in pedestrian crowds or when vehicles are close to each other, as shown in 

Fig.3.4. Shadows confused cognitive systems in ITS a great deal. In (Wang, Chung et 

al. 2004), an adaptive thresholding-based method was presented for detecting and 

removing shadows from foreground vehicles. The authors assumed that foreground 
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vehicles had been extracted from the background. Adaptive thresholding was applied 

to firstly confirm the existence of shadows and remove them if confirmation was 

made. To decide whether there were shadows presenting in an image, two values, 

brightness and energy values, were calculated for each image pixel. These values 

represented the intensity relationships between image pixels around the pixel under 

consideration. With the assumption that objects were usually brighter than shadows in 

a scene, authors indicated a large brightness signified a high possibility that shadow 

existed. Having confirmed shadows exist in a figure, authors determined the shadow 

boundary and direction based on Otsu’s method (Otsu 1975) and analysis of pixel 

intensity with some predefined conditions. In (Pai, Tyan et al. 2004), pedestrians’ 

shadows were detected by checking the status of the hue, saturation, and intensity 

between the foreground image and background image with three thresholds. These 

thresholds were all determined by the condition of illumination. Adaptive 

thresholding was also applied in vehicle detection. In (Hsieh, Yu et al. 2006), adaptive 

thresholding was simply utilised to segment vehicle in a traffic surveillance system 

with static camera. Vehicles were extracted according to the difference images 

between video frame and background and a predefined threshold, which was chosen 

as the average of the difference image.  

From the above analysis, we can see thresholding methods always required prior 

knowledge regarding the background image and were very sensitive to the 

illumination variance. This limited its application in ITS, where backgrounds were 

usually complex and light changed a lot. Therefore, the thresholding method was 

always applied in the pre-processing step, such as rough pedestrian or vehicle 

segmentation at the very beginning of cognitive systems. Besides, thresholding was 

often used to select the brightest points, following application of an edge-detection 

operator.  

Edge-based feature 

Unlike the thresholding method, edge feature is insensitive to change in the overall 

illumination level. Essentially, the boundary of an object is a step change in the 

intensity levels. The edge is at the position of the step change. Many edge detectors 

were proposed based on first-order or second-order differentiations. Based on a 

different convolution template, edge detectors, such as Prewitt, Sobel, Laplacian, 
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Marr-Hildreth, Canny and Spacek (Gonzalez and Richard 2002), had capabilities to 

deal with different problems. The selection of an edge operator for a particular 

application in ITS depends on the application itself.  

The most intuitive application of edge detection in ITS was lane detection. There were 

two situations of lane detection-cognitive system between the surveillance camera and 

lane and cognitive system between vehicle and lane. Lane detection in the former 

cognitive system was always an aid for vehicle detection. In (Kluge 1994), road 

curvature were tangential to the camera. A simple one-dimensional operator was used 

to detect edges horizontally. Edge orientation was estimated by matching edge points 

across several adjacent rows and fitting a line to the points. The estimation was 

achieved through the use of global constraints on the individual lane-boundary shapes 

derived from an explicit model of road structure in the world. The lane detection and 

tracking in later cognitive systems played an important role in intelligent vehicles. In 

(Paetzold and Franke 2000), road topography was recognised for vision-based driver 

assistance in urban traffic. Through global edge detection, a polygonal edge image 

was obtained. Lane structures such as markings, curbs, crosswalks and stop lines were 

detected in this global edge image. For an update of the known road situation it was 

not required to scan the entire image for road structures. Fast tracking was achieved 

through a local boundary model with some geometric assumptions.  

Besides lane detection, edge detectors were also utilised in traffic sign detection, 

which was mainly interesting for driver assistance systems. In (Soetedjo and Yamada 

2005), a technique for detecting circular traffic signs used edge detection. The 

common methods usually extracted all edge points of objects. However, the authors 

detected edge points of the ellipse objects only. In their method, edge points of an 

ellipse were classified into five classes. Through the analysis of connection between 

edge points, only the points that belonged to these five classes were extracted. The 

noisy points or the points that did not lie on the edges of the ellipse were discarded or 

reduced.  Regarding traffic sign detection, many other edge-based methods were 

proposed. Unlike the above one, most of them detected signs through revealing the 

geometric relationship of these edges, which combined into high-level features. We 

will review them in the next section.  
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Fig. 3.5 Edges based features discriminate truck from bus, which have similar 

shape 

 

Different views of a vehicle, especially rear/frontal views, contained many horizontal 

and vertical structures, such as vehicle top, rear-window, bumper, etc.. Using 

constellations of vehicles and horizontal edges has shown to be a strong cue for 

vehicle detection and recognition. In (Hsieh, Yu et al. 2006), an edge-based feature 

named by authors as a “linearity” feature was introduced to discriminate trucks from 

buses. As shown in the Fig.3.5, the truck and bus had similar sizes and speeds but 

different up-slanted edges, which was obtained by tracing all the edge pixels. When 

we scanned edge pixels, only edge pixels further from the vehicle base were recorded 

as candidates of “linearity” edges. After evaluating the regularity of candidature edges, 

some outliers were filtered out. In order to localise left and right positions of a vehicle, 

(Matthews, An et al. 1996) found strong vertical edges using an edge detector. They 

computed the vertical profile of the edge image by summing the pixels in each 

column followed by smoothing using a triangular filter. By finding the local 

maximum peaks of the vertical profile, they claimed that they could find the left and 

right position of a vehicle. (Betke, Haritaoglu et al. 2000) utilised edge information to 

detect distant cars by a coarse-to-fine search method looking for rectangular objects. 
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A refined search was activated only for small regions of the image, suggested by the 

coarse search. The coarse search looked through the whole edge maps for prominent 

edges, such as long uninterrupted edges. Whenever such edges were found, the 

refined search process was started in that region. Assuming the lanes had been 

detected, (Bucher, Curio et al. 2003) localised vehicles by scanning each lane starting 

from the bottom to a certain vertical position based on a predefined maximum 

distance in the real world. Potential candidates were obtained if a strong horizontal 

segment delimited by the lane borders had been found.  

Edge detection was also utilised for detecting license plates, which contained many 

edge structures such as license plate borders and characters. License plate recognition 

was one of the most important cognitive systems in ITS. In order to recognise a 

license plate efficiently, however, the location of the license plate, in most cases, must 

be detected accurately in the first place. In (Jia, Zhang et al. 2007), candidate regions 

were firstly obtained by mean shift with colour information. Using mean shift, the 

input colour vehicle images were segmented into many regions, where the pixels in a 

region shared the same colour and different regions were represented by different 

colours. Considering that license plate regions generally had higher variance in their 

pixels’ value because of the presence of characters, an important feature to describe 

license plate region was local variance. Edge density was then extracted to 

differentiate the license plate regions from others. With this consideration, the authors 

(Peng, Xu et al. 2011) went further. After applying a vertical edge detector to the 

input images, dense vertical strokes were always observed inside the license plate 

region even from different views. Line segment features were introduced in terms of 

density, directionality and regularity to characterise these strokes.  License plate 

regions were always with high density of line segments. Rather than disorderly, line 

segments inside license plate region tended to be approximately vertical. 

Directionality was utilised to describe this pattern. Finally, regularity was introduced 

to measure the regular repetition of line segments inside license plate.   

Many edge-based methods were also proposed for detecting pedestrians, which was 

another main road user besides vehicles. These methods mainly explored shape-

related information of pedestrians using edge detection as a tool. The methods and 

applications will be discussed in the section of high-level features. 
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Phase congruency 

 

Fig. 3.6 Comparing Canny detector with phase congruency on modified license 

plate image. Phase congruency based edge detector shows better robustness than 

the Canny method. 

 

As the aforementioned analysis suggests, thresholding methods generally followed 

edge detection to select the strongest edges, such as the Canny algorithm. However, 

the selection of a threshold was often inadequate for all the regions in an image since 

there were many changes in local illumination. As shown in Fig. 3.6 (a), the contrast 

changed in the two halves of the license plate image. The edges of characters were 

barely detected in the image of Canny edges, as shown in Fig 3.6 (b).  The absence of 

substantial contrast change was due to the parameter settings used in the Canny 

operator. These can be changed, but if the contrast was to change again, then 

parameters would need to be re-optimised for the new arrangement. On the other hand, 

as shown in the Fig.3.6 (c), edges can be clearly detected by phase congruency. Phase 

congruency (Kovesi 2000) was derived by frequency domain considerations operating 

on the considerations of phase. Based on the Fourier transform analysis, any function 

was made up from the controlled addition of sine-waves of differing frequencies. We 

can determine edge points when changes happened at the same time. The advantage 

of congruency detection was that it was invariant with local contrast: the sine-waves 

still added up as the changes were still the same place, even if the magnitude of the 

step edge was much smaller. Phase congruency was also applied to detect the 

vehicle’s logo in (Psyllos, Anagnostopoulos et al. 2011). Phase congruency was 

implemented to assess the existence of significant features. Values of phase 

congruency varied from a minimum of zero indicating no significance to 1 indicating 

a very significant feature. Through observing the phase congruency curve that 

corresponded to logos, radiator grille and headlights, the most important part of the 

“image signature” was the central region of the vehicle mask, where the 

manufacturer’s logo usually appears.  
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Curvature  

Edges are the low-level image features that are most obvious to human vision. They 

preserve significant features, so we can recognise what an image contains from its 

detected edges. However, we always need to recognise more subtle detail than the 

outline of an object. For example, we can hardly use the edge-based method to 

recognise drivers’ face in the aforementioned driver monitoring system. We need to 

utilise more other features.  

Intuitively, curvature was considered as the rate of change in edge direction. The rate 

of change characterised the points in a curve: points where the edge direction changed 

rapidly are corners, whereas points where there was little change in edge direction 

correspond to straight lines. The basic principle of curvature detection was to measure 

the angular change along the curve’s path. Moravec and Harris detectors (Harris and 

Stephens 1988) were two famous corner detection methods. They measured curvature 

by considering changes along a particular direction in the image. The operators 

computed the average change in image intensity when a window was shifted in 

several directions. When the intensity changed greatly, the point under consideration 

was selected as a corner. In order to recognise the vehicle type, Harris Corners were 

extracted from sections of car front images with a simple set of features including 

Sobel edges and Spectrum Phase (Petrovic and Cootes 2004). With these extracted 

features, a normalised sample of the vehicle front structure of each class was defined. 

The structure was expressed in a feature vector of pre-defined length that was 

representative of the vehicle identity. Finally, simple nearest-neighbour classification 

was used to determine the vehicle type associated with each vector. Ego-motion 

estimation was an important component in intelligent vehicles. A motion estimation 

system with visual input alone was proposed in (Nistér, Naroditsky et al. 2006). 

Without prior knowledge of the scene or the motion, point features were matched 

between pairs of frames and linked into image trajectories at video rate. The authors 

chose Harris corners, which has been improved to give stable detection under small- 

to moderate-image distortions (Schmid, Mohr et al. 2000).  
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Patch features 

There are some constraints on corner features we have reviewed so far such as 

sensitivity to object size and viewing angle. Patch features were introduced to relieve 

some of these constraints to some extent. The object can be characterised by a  

 

Fig. 3.7 Scale Invariant Feature Transform (SIFT) detected on example images 

(Image of Lena Soderberg used in many image experiments. It comprises 

512*512 pixels, and was originally cropped from centrefold of November 1972 

issue of Playboy magazine (Rosenberg 2001)). 

 

collection of patches. This allowed for the inclusion of scale and viewing change: an 

object can be recognised irrespective of its apparent size, even when part of the object 

was obscured; the object can be recognised from different viewing angle as a patch-

collection, which still appeared in a similar arrangement.  

SIFT (Lowe 2004) was one of most successful patch features to resolve the practical 

problems of object recognition. SIFT methods selected salient features in a manner 

invariant to image scale and rotation and with partial invariance to change in 

illumination. Further, the formulation reduced the probability of poor extraction due 

to occlusion clutter and noise. Fig. 3.7 shows SIFT features detected on the “Lena” 

image, which was a very famous testing image in the field of computer vision. Each 

patch feature extracted by SIFT was described by sampling the magnitudes and 

orientations of the image gradient of the patch. As shown in Fig 3.7(b), each arrow 
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indicated the direction of SIFT point while the length of arrow shows its magnitude. 

An array of histograms, each with orientation bins, captured the rough spatial 

structure of the patch. Based on SIFT, many methods were proposed in terms of 

improving processing speed and accuracy of SIFT. In order to compress the 

description vector of the patch, PCA-SIFT was raised in (Ke and Sukthankar 2004). 

Instead of using SIFT’s smoothed weighted histograms, the authors applied PCA to 

the normalised gradient patch. In addition, in order to boost the processing speed, 

rather than using the difference of Gaussians to determine local features, SURF (Bay, 

Ess et al. 2008) employed approximations to second-order edge detection at different 

scales to extract features. Traditional SIFT methods were fully invariant with respect 

to only four parameters that represent zoom, rotation, and translation, but worked 

poorly under affine transform. Affine-SIFT (ASIFT) (Morel and Yu 2009) simulated 

all image views obtainable by varying the two camera axis orientation parameters, 

namely the latitude and the longitude angles, left over by the SIFT method. This 

method permitted identification of features that have undergone very large affine 

distortions, which always happened in reality. Fig.3.8 illustrates the comparison of 

two matching results using SIFT and Affine-SIFT, respectively. The line indicated the 

matched features between rotated vehicle front image and the whole image captured 

by traffic surveillance camera. We obtained many more matched features using 

Affine-SIFT more than that using SIFT. However, we can see there are two faults 

indicated by red lines in Fig.3.8 (b). Actually, it is a dilemma in feature extraction. On 

one hand, we desire more features when the types of these features are suitable for the 

problem. On the other hand, we have to avoid “bad” features, which would deteriorate 

the learning process. Therefore, the dependency and redundancy of features needs to 

be analysed. This problem is tackled in our proposed feature selection scheme. 

Because of their good performance, SIFT-based methods were applied widely in all 

the cognitive systems in ITS.  
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Fig. 3.8 Comparison of matched results with SIFT and Affine-SIFT features. 

Affine-SIFT based method obtained more matched points, however, brought 

some false matching as well. 

In (Psyllos, Anagnostopoulos et al. 2011), the vehicle logo was recognised based on 

SIFT features matching. To enhance the recognition process, vehicle model logos 

with a merged set of SIFT features were employed instead of using a single image. 

All SIFT features were detected from a set of images and one image was selected as a 

reference. The SIFT features of the remaining images were transformed to the 

coordinate system of the reference image by calculating their homographies using 

RANSAC (Fischler and Bolles 1981). At the end, a logo database with fused features 

was formed.  

In order to estimate the real-time distance from the front vehicle, authors in (Peng, Xu 

et al. 2012) proposed a driver assistance system. With a monocular camera mounted 

on the front of the vehicle, the vehicle rear was first detected. Because the system 

strictly required high processing speed, SURF extracted from the vehicle rear was 

utilised to register the video frame. After complementing the registration, the 

homography between two consecutive frames were calculated.  

Rather than applying an Optical Character Recognition (OCR) system, the authors in 

(Hoferlin and Zimmermann 2009) made use of the Linear Discriminant Analysis 

(LDA) with SIFT features to distinguish between the road signs. After detecting the 

traffic signs, SIFT features were extracted from the candidate regions. For the 

recognition, Multi-Layer Perceptrons (MLP) were utilised. The input layer of this 

neural net consisted of 128 neurons reflecting the dimensionality of the SIFT feature 

vector. The output layer represented each traffic sign class by a neuron.  
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In (Besbes, Rogozan et al. 2010), SURF features with Support Vector Machines 

(SVMs) were used for pedestrian detection. Fast features extraction was assured by 

using a hierarchical codebook of SURF features. The codebook was built by SURF 

features clustering. Starting from each SURF as a separate cluster, the two most 

similar clusters were merged as long as the Euclidean distance between SURF 

descriptors was below a threshold. Sometimes pedestrian identification such as gender 

classification was required in ITS. Using SIFT-based features, a Bayesian classifier 

was trained to detect, localise, and classify faces in terms of gender and age (Toews 

and Arbel 2009). The experiments showed good performance of the recognition 

system even from arbitrary viewpoints and in the presence of occlusion.  

Motion analysis 

We have reviewed the main low-level features that we can extract from a single image 

and their applications in ITS. However, the input of cognitive systems in ITS is  

consecutive video frames. We always need to analyse the motion of objects such as 

walking pedestrians and moving vehicles. If we have two images obtained at different 

times, the simplest way in which we can detect motion is by image differencing. 

However, simply subtracting the background image from video frames can hardly 

obtain accurate foreground objects. This is because the background image is never 

static and change exists constantly with lighting. The Gaussian Mixture Model (GMM) 

modelled each pixel as a mixture of Gaussians to determine whether or not a pixel 

was part of the background. The GMM stores M separated normal distributions for 

each pixel, where M is typically between 3 and 5 depending on the complexity of the 

scene. A foreign object appearing in the scene will be represented by some additional 

components with low weights and high variances. This leads to the conclusion that 

background-foreground segmentation can be achieved by selecting the mixture of the 

components of the highest weight-to-variance ratios as a background model, and the 

remainder as foreground. GMM was widely used in the cognitive systems in ITS, 

especially when the camera is fixed and objects are moving such as in a pedestrian 

counting system (Peng, Xu et al. 2012) and a vehicle detection system (Wang, Zou et 

al. 2009).  

Background subtraction can perceive the global motion only. In order to describe the 

way the points in an image actually move, methods measuring how a pixels’ position 
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changes in each image frame were proposed. The displacement corresponds to the 

projection of movement of the objects in the scene and it was referred to as the optical 

flow, which was a measurement of a pixel’s velocity. Optical flow can be found by 

looking for corresponding features in images. In (Haag and Nagel 1999), using the 

combination of edge detection and optical flow, a comprehensive system was 

proposed to track vehicles based on a 3D model. The optical flow approach exploited 

the entire object image to estimate orientation, speed and angular speed, while the 

edge element approach concentrated only on edge elements in the vicinity of 

modelled edge segments. Correspondingly, the edge element approach is more 

sensitive to model errors. On the other hand, the optical flow approach cannot be 

employed while the object to be tracked either was still or moved very slowly.  

3.2.2.2 High-level features 

High-level feature extraction concerns finding the shapes of objects. In high-level 

feature extraction, we generally seek invariance properties in such a way that the 

extraction result does not vary according to specified conditions. In other words, 

techniques should find shapes reliably and robustly regardless of the value of any 

parameter that can control the appearance of a shape. Collections of low-level features 

described in the last section were usually used. For example, a group of low-level 

features such as wavelet features and Histogram of Oriented Gradient (HOG) features 

can provide appearance descriptions of objects. Intuitively, we can also investigate the 

use of shape: template matching, active contours, and shape skeletons. Template 

matching was a model-based approach in which the shape was extracted by searching 

for the best correlation between a known model and the pixels in an image. It is 

possible to use an active contour such as using a plastic bag to find a shape: the plastic 

bag is placed outside the object, and then, by taking air out of the bag, making it 

smaller, the shape of the object is found when the bag stops shrinking. In addition to 

using an object’s perimeter or area, its shape can also be described by its skeleton. 

Table 3.2 shows a summary of high-level features. Using these high-level features, 

pedestrians, vehicles, license plates, and traffic signs were recognised in the ITS.  
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Table 3. 2 Summary of high-level features. 

High-level features  Instances 

Collection of low-level 

features 

Haar-like features, Gabor features, Histogram of Oriented 

Gradients (HOG) 

Fixed template matching 2-D or 3-D template matching, Hough Transform (HT) 

Deformable template 

matching 

Parts based template matching, Active contour 

 

Collection of low-level features 

Low-level features can be grouped to give structure, shape and appearance of objects. 

Using the form of Haar wavelets, the Viola-Jones approach originally detected objects 

of interest in images (Viola and Jones 2001) which was later extended to be one of the 

most popular techniques for detecting human faces (Viola and Jones 2004). 

 

Fig. 3.9 Pedestrian detection using Histogram of Oriented Gradient (HOG). 
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Using the integral image approach, rectangles detected image features fast which can 

describe curved structures. For example, if we were to consider the face image, then 

the eyes were darker than the cheeks which were immediately below them, and the 

eyes were also darker than the bridge of the nose. A series of templates were matched 

to the image to encode differences in averaged intensities between different regions. 

The template was selected if it best matched the face at some position. In this way we 

can find the underlying shape of face. In (Monteiro, Peixoto et al. 2006) (Zhang and 

Zhang 2006), the authors presented a visual driver surveillance system to monitor the 

driver’s head motion as well as the eye blink patterns. The driver’s face was rapidly 

detected based on a boosted classifier of Haar-like features. The eye was then found 

using thresholding by assuming that the eyes are the darkest regions in a face. Similar 

frameworks were widely used in the detections of pedestrians (Cui, Liu et al. 2007) 

(Monteiro, Peixoto et al. 2006), vehicles (Haselhoff and Kummert 2009), traffic signs 

(Baró, Escalera et al. 2009) and license plates (Zhang, Jia et al. 2006).  

As an alternative to Haar-like features, an edge-based method called Histogram of 

Oriented Gradients (HOG) (Dalal and Triggs 2005) showed its positive performance 

on pedestrian detection. The implementation of HOG was simply shown in Fig.3.9. 

The method first detected edges from the original image (Fig 3.9(a)) using an 

advanced first-order detector, as shown in Fig 3.9(b). A histogram was then created to 

store the vote decided from each pixel’s edge magnitude and direction, as shown in 

Fig 3.9(c). The image was divided into small “cells”, each cell accumulating a local 1-

D histogram of gradient direction or edge orientations over the pixels of the cell. The 

combined histogram entries formed the shape of objects. In order to deal with the 

illumination variation, contrast normalisation is applied in blocks that have somewhat 

larger spatial regions than the “cell”. The blocks were illustrated as white in Fig 3.9(d). 

The normalised descriptor was referred as HOG descriptor. HOG methods have been 

applied on objects other than pedestrians only in ITS. Authors in (Xie, Liu et al. 2009) 

utilized HOG features with Support Vector Machines (SVMs) to detect traffic signs. 

In the implementation of this paper, the description patch was 32×2 pixels size, the 

block was 32×32 pixels size, each cell was 8×8 pixels size and each cell contains 9 

orientation bins. Each block consisting of 2×2 cells can obtain a 36-dimension feature 

vector. Then the whole patch which included 3×3 blocks could achieve a 324-

dimension descriptor vector. The classifier was then trained by SVM with these 
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vectors as input. In (Negri, Clady et al. 2008), in order to detect vehicles by on-board 

camera, using a cascade of boosted classifiers, three features were compared: Haar-

like features, HOGs, and their combination. The experiments showed the best 

performance was achieved by the combination of features. The authors claimed the 

reason was that HoG-based classifiers eliminated “easily” negative examples in the 

early layers of the cascade, while in the later layers, the Haar-like features based 

classifiers generated a fine decision boundary removing the negative examples near 

the vehicle model.  

The Viola-Jones approach and HOG method described the entire objects such as faces 

and license plates by the collections of local texture features. There have been many 

approaches which applied other wavelets to detect objects by combinations of parts. 

Each part was a transform from a subset of wavelet coefficients to a discrete set of 

values. Such parts were designed to capture various combinations of locality in space, 

frequency, and orientation (Schneiderman and Kanade 2004). These approaches 

brought in great flexibility in the representation of the part. The method grouped 

images into sets, and each set is a part. For a vehicle, the parts included vehicle 

front/rear, vehicle sides, and vehicle top. In (Peng, Jin et al. 2013) (Peng, Jin et al. 

2012), using a fixed traffic surveillance camera facing oncoming vehicles, the vehicle 

was localised and classified into either a truck, bus, sedan, or minivan. The aim was 

achieved by vehicle front detection and analysis based on eigenvalue analysis. For a 

human face, the parts included the eyes, nose, and mouth. In (Arbab-Zavar and Nixon 

2011), a person’s identity can be recognised by ear biometrics analysis. Based on an 

ear’s centre points, a radial scan was taken using Gabor wavelets to capture the ear’s 

features. The detail was preserved at the short wavelength and the larger structures 

were detected at longer wavelengths.  

Fixed template  

The most intuitive approach to investigate the use of shape was template-matching. 

To compute the best correlation between a known model and image, alternative ways 

from simple pixel comparison to maximum likelihood estimation were applied. The 

process of simple pixel comparison was similar to the process of template convolution. 

The template started from the origin of the image and matched with the image to 

record a count which indicated how well the template matched that region of the 
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image. After the template scanned through the whole image, the best matched part 

was obtained. However, this simple pixel comparison was impractical in reality, 

because the image was corrupted by noise and illumination changes. By considering 

each pixel in the image was corrupted by additive Gaussian noise, template-matching 

became a parameter estimation problem that maximised the probability that a point in 

the template matched the corresponding pixel in the image at the same position. The 

position where the template best matched the image was the estimated position of the 

template within the image. Due to the nature of the template matching methods, they 

have been applied in ITS for recognised rigid bodies such as vehicle and traffic signs 

only. In (Handmann, Kalinke et al. 2000), authors proposed a template based on the 

observation that rear/frontal view of a vehicle has a “U” shape. During matching, a 

vehicle was considered to be detected if the “U” shape was found. In (Bensrhair, 

Bertozzi et al. 2001), based on the assumption that a vehicle was generally 

symmetrical, characterised by a rectangular bounding box which satisfied specific 

aspect ratio constraints. First, the input image was checked for the presence of two 

corners representing the bottom of the bounding box using perspective and size 

constraints. Then the top part of the bounding box was detected, once again, by 

perspective and size constraints. Once the bounding box was detected successfully, 

authors claimed the vehicle was found in the image. In (Hsu and Huang 2001), a 

coarse-to-fine search was conducted for traffic sign detection. The coarse search used 

a rectangular block with fixed size, whereas the fine search used the triangular or 

circular template with variable size. Both of them used template-matching to find the 

road signs in the Region of Interest (ROI). The latter operated by counting the red 

image pixels inside the rectangular block or the template, and then selected the 

rectangular block with a red pixel ratio of at least 20% or the variable shape-template 

with a red pixel ratio of at least 75%.    

Actually, these 2-D template-matching methods were very limited in practice as they 

were very sensitive to rotation and scale. In order to overcome these limitations, 3-D 

model matching methods were proposed. In (Hinz, Schlosser et al. 2003), an adaptive 

3D-model was used to describe the vehicle. The prominent geometric features of cars 

were represented as wireframe in this model. The model further contained 

substructures like windshield, roof and hood. As a radiometric feature, colour 

constancy between hood colour and roof colour was included. Matching was carried 
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out by a top-down scheme and maximum likelihood estimation. However, 

constructing a comprehensive 3D-model of vehicle was hard. Due to these limitations 

of template matching, most papers in the literature did not report quantitative results 

but demonstrate performance through examples only.  

 

Fig. 3.10 Traffic signs are with basic shapes such as circle, triangle, and rectangle. 

 

Clearly one drawback of the above template-matching method was that it required 

construction of the necessary models and parts if you are to detect other objects. This 

can be quite demanding. In fact, it can be less demanding to reformulate template-

matching using basic shapes such as lines, circles, and ellipses. The Hough transform 

(HT) (Hough 1962) was a technique that can locate these basic shapes in images. The 

HT implementation defined a mapping from the image points into an accumulator 

space. The mapping required much less computational resources than template- 

matching. Because many objects of interest consisted of the aforementioned basic 

shapes in ITS, HT was often applied in ITS cognitive systems. In many countries, 

traffic signs were of basic shapes such as circles, rectangles, and triangles, as shown 

in Fig 3.10. HT were applied in (Damavandi and Mohammadi 2004), (García-Garrido, 

Sotelo et al. 2005) to detect traffic signs quickly. License plates were another object 

of basic shape – a rectangle, in ITS. In (Duan, Duc et al. 2004), the authors optimised 

the speed and accuracy of license plate detection through applying the HT to contour 

images.  

Deformable template  

In the last section, the matching of methods with knowledge of a model of the target 

object in ITS were reviewed and discussed. The model was fixed in that it was 

flexible only in terms of the parameters that define the shape or the parameters that 

define a template’s appearance. However, as per the limitations pointed out in the last 



53 

 

section, fixed template-matching methods (Handmann, Kalinke et al. 2000) 

(Bensrhair, Bertozzi et al. 2001) (Hsu and Huang 2001) were always very “loose” 

because it was usually impossible to model a shape with sufficient accuracy, or it 

provided a template of the target that was impossible to parameterise. In this case, 

deformable template-matching provided techniques that can evolve to the target shape 

or adapt their solution to the objects of interest.  This section will review and discuss 

the technique that can be used to find flexible shapes in images and their applications 

in ITS.  

 

Fig. 3.11 Pedestrian detection using parts-based template matching. The body 

shape changes but the spatial relationship remains constant when the pedestrian 

moves. 

Rather than matching an object with a fixed template, objects were represented as a 

collection of parts arranged in a deformable structure. We can imagine that the object 

was modelled as a network of parts which are connected by “springs”, which 

controlled the spatial relationships between the parts and allowed these parts to move 

relative to each other. For example, it was hard to use a fixed template to characterise 

a human’s face as there were too many different facial expressions. However, the 

parts of the face have fixed shapes and their spatial relationships were constrained, 

such as, the nose must be beneath and between the eyes. Deformable template 

matching was then a comparison between the match of part-template to the image and 

the interrelationships between the locations of the objects. As shown in Fig. 3.11, the 

shape of a body changed when a pedestrian moves. However, the spatial relationship 

among parts of the body did not change. As reviewed in the last section, fixed 

template-matching can be considered as a maximum-likelihood problem. Also, parts-

based template-matching can be regarded as a parameter estimation problem. The 

parameters were estimated that can maximise the compromise between the positions 

of the parts and the deformation. This parameter estimation was proposed firstly in the 
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pictorial model introduced by Fischler and Elschlager (Fischler and Elschlager 1973). 

However, determining these parameters was computationally very challenging. In 

(Felzenszwalb and Huttenlocher 2005), a statistic framework was proposed to achieve 

the solution efficiently. Using a pictorial structure model, authors found faces and 

human bodies in an image. In (Huber, Kapuria et al. 2004), a parts-based method for 

classifying scenes of 3D vehicles into a set of pre-determined classes (pickup trucks, 

minivans, and sports cars). Parts were extracted from training vehicles and grouped 

into part-classes using a hierarchical clustering algorithm. In the training stage, each 

part-class was represented as a collection of semi-local shape features. A mapping 

from part-classes to vehicles classes was derived from the learned part-classes and 

known vehicles classes. In classifying, local shape features were computed. The 

object class was determined using the learned part-classes and the part-to-object 

mapping.  

3.2.2.3 Hybrid features 

From the above review of low-level and high-level features and their applications in 

an ITS, we can tell that most systems for object detection or classification utilised a 

combination of features rather than a single feature. Based on the objects of interest 

and the environment, various features were utilised. High-level features, such as fixed 

and deformable template matching, usually achieved fast processing speed and are 

understandable because they contain shape information on the objects. On the other 

hand, low-level features, such as edges, patch-based features, and motion analysis 

features, were computationally complex but deliver more subtle information.  

To take advantage of both types of features, hybrid features that combine low-level 

features and high-level features were usually utilised in an ITS. There were two ways 

to apply hybrid features in an ITS. First, low-level or high-level features were 

employed on different steps in a complex system in the ITS. In (Peng, Jin et al. 2013), 

we used hybrid features to classify vehicles into different classes (bus, truck, sedan, 

and minibus). At the beginning, to extract the vehicle front, the spatial relationship 

between the license plate and vehicle front was utilised. Consequently, eigenvectors 

were extracted from each vehicle front for training the classifier. In addition to using 

hybrid features to achieve the goals of this step, hybrid features were also applied for 

a single recognition task. Haar-like features were a popular type of low-level feature 
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for object recognition. However, because they are very weak features, a very large 

number of them was usually required to obtain several strong classifiers. (Peng, Xu et 

al. 2011) proposed line segment features that were based on the appearance of 

patterns in a license plate. Through combining line segment features with Haar-like 

features, we dramatically reduced the demanded dimensions of the Haar-like features, 

and therefore, we saved much time in both the training and testing stages. Moreover, 

because most of the significant Haar-like features were retained while others were 

discarded, the recognition accuracy was boosted a substantial amount. Essentially, 

making suitable choices for the feature types is the critical step in building cognitive 

systems in an ITS. However, this step is not sufficient. A high dimensionality of 

features or “bad” features can consume processing time and bring down the accuracy 

of the cognitive system in an ITS. In fact, to retain the most significant features while 

discarding the “bad” ones, optimal feature subsets must be selected. Related work 

about feature subset selection and their application in ITSs will be reviewed in the 

next section.  

3.3 Related work about feature subset selection 

3.3.1 Feature subset selection in general terms 

In a classic cognitive system, an object is typically described as an assignment of 

values to a set of features           ) and one of   possible classes         to 

the class label. The cognition task is to train a classifier that accurately predicts the 

labels of new incoming objects.  

The learning of the classifier is inherently determined by the existing data sets. A data 

set contains a number of vectors, each of which corresponds to some occurrence of an 

event, and each vector is composed of a large number of features. In general, which 

features matter is not known. As a result, all of the types of information about events 

of interest are often gathered. Many of these features are redundant. Redundant 

features increase the size of the search space and make generalisation more difficult. 

The curse of redundant features has been a major obstacle in machine learning and 

data mining (Mitra, Murthy et al. 2002) (Robnik-Šikonja and Kononenko 2003) (Dash, 

Choi et al. 2002). Feature subset selection entails choosing the feature that maximally 

generates new knowledge about events and phenomena from existing data sets for the 
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classification or forecasting of future events. The feature subset selection approach 

was based on the principle of parsimony (Bell and Wang 2000). The model with the 

smallest possible number of parameters that adequately represents the data is 

favourable. However, the task of feature subset selection is difficult. Selecting the 

best feature subset has been proven to be an NP-complete problem (Hoos and Stützle 

2004). In (Hua, Tembe et al. 2008), the authors summarised the challenges as follows: 

First, the features that appeared redundant singly could become highly redundant 

when taken with others. Second, there were many levels of multi-way redundancy in 

the feature space. Third, a high feature correlation did not imply an absence of feature 

complementarity. Fourth, high levels of multicollinearity increased the probability 

that a good predicator of the output signal will be found to be non-significant and be 

rejected from the model. 

As discussed in 3.1.1, two broad categories of optimal feature subset selection have 

been proposed: the filter and the wrapper. In filter approaches, the features are scored 

and ranked based on certain statistical criteria, and the features with the highest 

ranking values are selected. Popular filter methods have included the t-test (Hua, 

Tembe et al. 2008), chi-square test (Jin, Xu et al. 2006), Whitney test (Liao, Li et al. 

2007), mutual information (Peng, Long et al. 2005), Pearson correlation coefficients 

(Biesiada and Duch 2007) and Principal Component Analysis (PCA) (Rocchi, Chiari 

et al. 2004). Filter methods were fast but lack robustness against interactions among 

features. Moreover, it was not clear how to determine the cut-off point for ranking, to 

select only truly important features and exclude noise. For example, most PCA 

methods simply select the top N features with the largest eigenvalues. In the wrapper 

methods, the accuracy of the potential subsets in the predication is assessed. Wrapper 

methods are computationally more demanding than filter methods because they 

evaluated candidate feature subsets using a learning algorithm, and the learning 

algorithms usually involve iterative methods. Support Vector Machines (SVMs) (Mao 

2004) were the most frequently used wrapper methods. However, SVMs have 

typically been criticised for their computational cost.  

Recently, to take advantage of both the filter and wrapper methods, researchers have 

proposed hybrid methods (Tan, Fu et al. 2006) (Yan and Yuan 2004). Hybrid methods 

first applied filter methods to find a feature pool quickly, and then, applied wrapper 

methods to select the optimal subset from the selected feature pool.  
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3.3.2 Feature subset selection for an ITS 

In the previous section, we reviewed feature subset selection in general. In this section, 

we will investigate the most popular feature subset selection methods for an ITS and 

our improvement under the guidance of the minimum redundancy scheme.   

As shown in Fig. 2.2, most of the existing feature subset selection approaches are a 

combination of search strategies and evaluation criteria. K-means clustering (Hartigan 

and Wong 1979) and the Random Sample Consensus Algorithm (RANSAC) (Fischler 

and Bolles 1981) were two of the most classic methods. K-means partitioned the full 

set of features into   clusters, in which each observation belonged to the cluster that 

has the nearest mean. Given the candidate feature set           ) , k-means 

clustering aimed to partition the full set   into k sets           ), to minimise the 

within-cluster sum of squares: 

   ∑ ∑ ‖     ‖
 

     

 
                                            (3.1) 

where    is the mean of the features in   . In an ITS, K-means clustering was widely 

used in detection and classification problems, such as pedestrian detection (Zhang, 

Cai et al. 2007), license plate detection (Hsieh, Juan et al. 2005), and traffic 

abnormality detection (Münz, Li et al. 2007).  

RANSAC was a resampling technique that generates candidate solutions by using the 

minimum number of features that are required to estimate the underlying model 

parameters. Unlike conventional sampling techniques that used as many of the 

features as possible to obtain a solution with the least squared error, RANSAC used 

the smallest set possible and proceeded to enlarge this set with consistent features. 

RANSAC has been widely used in various registration applications in ITSs, for 

example, in visual odometry for intelligent vehicles (Scaramuzza, Fraundorfer et al. 

2009) (Nistér, Naroditsky et al. 2006) and in a vision system for pedestrian navigation 

(Jirawimut, Prakoonwit et al. 2003). RANSAC was very useful when addressing a 

large set of features. In chapter 7, in the development of the pose estimation system 

toward intelligent vehicles, we utilised RANSAC to remove redundant features to 

boost the processing speed as well as the registration accuracy. 
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PCA and BoF were two additional powerful methods for feature subset selection. 

Simply speaking, PCA sorted the features from the most important to the most trivial. 

PCA was mathematically defined as an orthogonal linear transformation that 

transformed the features to a new coordinate system in such a way that the greatest 

variance by any projection of the data lies in the first principal component, the second 

greatest variance in the second principal component, and so forth (Jolliffe 2005). 

However, PCA-based methods usually ignored redundancy analysis. In Chapter 5, 

through the implementation of a vehicle classification system, we will demonstrate 

the advance of our raised adaptive PCA method under the scheme of minimum 

redundancy in feature subset selection. BoF was the bag-of-words model applied in 

computer vision. In document classification, a bag of words was a sparse vector of 

occurrence counts of words. Similarly, “words” in images were the detected features. 

With the BoF model, after the feature subset selection, a feature representation set 

was generated that is called the “Codebook”. However, the codebook can increase 

with more training data. A large codebook requires more processing time. In Chapter 

8, we propose the Inference-BoF model to solve this problem. The related work about 

PCA and BoF in ITSs will be reviewed in detail in Chapters 5 and 8, respectively. 

 

 

 

 

 

 

 

 

 



Chapter 4 Outline and Contributions 

The aim of this thesis is to develop feature selection schemes for an ITS that can 

significantly improve the performance of cognitive systems in ITSs. We do not focus 

on the development of new feature primitives to be used in vision-based cognitive 

systems. Instead, we propose an efficient feature selection framework that is 

composed of a maximum dependency scheme and a minimum redundancy scheme. 

With the scheme of maximum dependency, through fully considering the specific 

applications such as the task, performance, and environment of the implementation 

and the characteristics of different features including low-level, high-level, hybrid 

features, the most suitable types of features are selected. A comprehensive review of 

feature type selection and its applications in ITSs is conducted. This survey reveals 

the attributes of features of different types and their applicable scenarios. Once 

deciding on the suitable types of features, the optimal feature subset must be selected. 

The necessity of selecting an optimal feature subset is discussed. After reviewing the 

related work regarding feature subset selection, we propose the scheme of minimum 

redundancy to balance between the most compact feature subset and the best 

application performance.    

Throughout this thesis, special emphasis is placed on having the performance 

improved by this feature selection scheme in terms of practical and challenging 

applications in ITSs. Based on the viewpoint of cognitive systems, an ITS is 

composed of a cognitive system that involves vehicles, pedestrians, infrastructure (for 

example, the surveillance camera and road), and drivers. Because ITSs is an 

applications-oriented field, it is meaningless to propose a methodical scheme without 

considering specific applications. In this thesis, we elaborate on the proposed feature 

selection scheme in three of the most popular and challenging cognitive systems in an 

ITS: vehicle surveillance, pedestrian surveillance, and intelligent vehicles. Finally, we 

propose the Inference BOF model under the guidance of feature selection schemes 

and demonstrate its advances through addressing an extremely challenging task, 

which is gender classification that is based on face recognition. 
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4.1 Feature selection for vehicle surveillance—vehicle classification 

using multiple eigenspaces 

As the main road user, the vehicle is one of the most important components in ITS. To 

some extent, ITS is pushed by the increase of vehicles as ITS was introduced as a 

solution to the problem of traffic congestion in the towards the end of the 1990s. We 

first apply the proposed feature selection scheme in vehicle surveillance system in 

Chapter 5.  

Vehicle type classification became an attractive topic due to its importance in ITS. 

Traditional vehicle type classifications were computationally expensive and have not 

been successful under conditions with variable illumination, occlusions, shadows and 

image rotations. In order to  tackle these problems we propose a robust vehicle type 

classification method based on an adaptive PCA method. The  function of PCA is to 

build an eigenspace, which consists of eigenvectors encoding important information 

regarding the object of interest. Specifically, traditional PCA methods selected a 

certain percentage of the top eigenvectors without considering the specific 

classification task. The most notable weakness of the traditional PCA method was 

ignoring the analysis of feature redundancy. In this chapter, we propose an advanced  

method that builds multiple eigenspaces with full consideration of different classes to 

deal with redundant and irrelevant eigenvectors. At first, in the training stage, the  

eigenspace is built for each class after selecting eigenvectors via a genetic algorithm.  

Then in the classifying stage, the front view of a vehicle is extracted automatically by 

examining the front width and the location of the license plate. Next, the vehicle  is  

categorised into one of four classes (truck, bus, minivan and sedan) after projecting it 

into constructed multiple eigenspaces. Lastly, the comparison with current popular 

methods demonstrates the performance of our proposed method. 

4.2 Feature selection for pedestrian surveillance—pedestrian 

counting using hybrid features 

The pedestrian is another main road user. Unlike vehicles, pedestrians have different 

attributes such as irregular shapes and frequent occlusions. Reliable pedestrian 

detection and counting is an important and challenging topic in visual surveillance. In  

recent  years,  many  impressive  approaches  were  proposed  in  this  field,  but  these  
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solutions  have various  restrictions  such as unaffordable computational complexity, 

occlusions, complicated scenario and changing camera angles. Chapter 6 aims to 

propose a fast and stable method to detect and count pedestrians in both simple and 

complicated scenarios by taking advantage of our proposed feature selection scheme. 

First, post-processing steps are performed on foreground segmentation results to 

separate moving blobs, which includes pedestrians or other moving objects such as 

leaves and animals. Second, 9 features are extracted from each blob. Based on these 

extracted features, a classifier is trained using SVM. Via this method, the number of 

pedestrians in the scene is obtained as the sum of pedestrian numbers in all blobs. 

Finally, a novel analysis  method  with  traditional  tracking  is  proposed  to  optimise  

the  estimation  of  pedestrian numbers.  This  method,  which  has  been  evaluated  

from  3  videos  recorded  from  both  simple  and complicated  scenarios,  were  

implemented  with  parallel  computing  architecture  for  acceleration. Comparing 

these to the other two state-of-the-art methods, our method has been demonstrated to 

be effective. The speedup benefits from the parallel computing architecture 

implementations has also been shown. 

4.3 Feature selection for intelligent vehicles—combining front vehicle 

tracking with 3D pose estimation  

In Chapter 7, a feature selection scheme is applied in the development of intelligent 

vehicle system. In the vehicle surveillance system and pedestrian surveillance system, 

the camera was fixed. However, in an intelligent vehicle system, the background is 

not static as the camera is installed on the front of a moving vehicle. Moreover, 

processing time is strictly required in an intelligent vehicle system as system must 

react instantly when the vehicle is driving on the road.  

Driver assistant systems enhance traffic safety and efficiency. The accurate 3D pose 

of a front vehicle can help a driver to make the right decision on the road. We propose 

a novel real-time system to estimate the 3D pose of the front vehicle. This system 

consists of two parallel threads: vehicle rear tracking and mapping. The vehicle rear is 

first identified in the video captured by an on-board camera, after license plate 

localisation and foreground extraction. The 3D pose estimation technique is then 

employed with respect to the extracted vehicle rear. Most current 3D pose estimation 

techniques need prior models or a stereo initialisation with user cooperation. It is 
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extremely difficult to obtain prior models due to the varying appearances of vehicles’  

rears. Moreover, it is unsafe to ask for drivers cooperation when a vehicle is running.  

In our system, two initial keyframes for stereo algorithms are automatically extracted  

by  vehicle  rear detection  and  tracking.  Map points are defined as a collection of 

point features extracted from the vehicle’s rear with their 3D information. These map 

points are inferences that relate the 2D features detected in following vehicles’ rears 

with the 3D world. The map is extremely important because the relative 3D  pose  of  

the on-board camera to the front vehicle rear is then estimated through  matching  the  

map  points  with  point  features detected  on  the  front  vehicle  rear. We will see the 

importance of our feature selection schemes in building and maintaining the map. We 

demonstrate the capabilities of our system  by  testing  on  real‐time and synthesised  

videos. In order to make the experimental analysis visible, we demonstrate an  

estimated 3D pose through  augmented  reality, which needs  accurate  and real-time 

3D pose estimation. 

4.4 Feature selection with inference bag of features 

In Chapter 8, we originally proposed an inference BoF method for selecting features 

efficiently. Current BoF methods construct a Visual Word Dictionary (VWD) from 

training images. More training data is desired for a higher classification rate. However, 

more training data increase the size of the VWD as well as the testing time. A fixed 

size of the VWD in the current methods guarantees the processing speed but would 

not address the available training data. Our method addresses this dilemma. We use 

three sets of images: training, inference and testing images. Using sparse coding, 

VWD is constructed from inference images, the amount of which is fixed. Posterior 

probabilities of visual words over classes are learned from training images in a 

Bayesian framework. In testing, the testing images are represented by visual words in 

VWD. The choices for representing the visual words determine the classification 

decision. We compare our method with two popular methods via addressing a 

challenging task, which is face recognition-based gender classification. The 

experiments show that our Inference BoF method can always achieve an optimal set 

of features.  
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4.5 Evaluation methodology 

Performance evaluation of our feature selection scheme is a major aspect of this work, 

in terms of both the methodology and datasets that are used. Evaluation can be 

performed using a per-image measure (the detection context) or a per-window 

measure (the classification context). Per-image evaluation involves shifting a 

classifier through its location and scale across the whole test image. In per-window 

evaluation, the test data involves extraction and scaled bounding cropped from full 

test images.  

Depending on the application context of the systems to be evaluated, we use both 

evaluation methods. Per-image evaluation is used to evaluate sliding-window 

classifiers, for example, the license plate detection that is utilised in both of the 

vehicle surveillance systems in Chapter 5 and in the intelligent vehicle in Chapter 7. 

On the other hand, for the evaluation of integrated systems that include hypothesis 

generation such as face recognition in Chapter 8, per-image evaluation is the only 

viable choice. Most real-world systems, however, integrate several modules that do 

not follow a brute-force sliding-window detection scheme but instead use a pre-

processing step to determine the initial pedestrian location hypotheses for both the 

enhanced performance and the computational efficiency. For example, this task is 

performed by background subtraction in a pedestrian surveillance system in Chapter 6.  

For the evaluation data, we chose public and real-world data, such as pedestrian 

counting data, face recognition data, and license plate recognition data. In Chapter 5, 

the applied cognitive system recognises a vehicle by using images of the vehicle from 

a front view. We could not find a suitable public database for this evaluation. 

Therefore, we recorded 4600 images of vehicle front views on a highway and made 

these images publicly available for benchmarking and to stimulate further research. 

4.6 Publications 

This thesis has led to a number of publications that are listed in Appendix 

Publications. Note that the corresponding publications have been included in the 

discussion of related work in Chapter 3.  

 



Chapter 5 Feature Selection for Vehicle Type Classification 

The content in this chapter has been published in (Peng, Jin et al. 2013) (Peng, Jin et 

al. 2012) (Peng, Xu et al. 2011). 

The content in this chapter has been presented in the journal manuscript “Vehicle 

Type Classification Using Multiple Eigenspaces”, which has been submitted to IEEE 

Transaction on Intelligent Transportation System.  

5.1 Background 

As an important cognitive system in ITS, vehicle type classification is widely used in 

vehicle authentication systems, parking optimisation, autonomous navigation, law 

enforcement, etc. However, at most places, vehicle types are still classified by humans 

due to the complexity of this work. Several disturbances on road such as occlusions, 

changing light conditions, shadows, rotations, etc. have affected the accuracy of 

vehicle type classification. Vehicle type classification is always a complicated system 

involving more than one step: foreground segmentation, vehicle detection, feature 

extraction and classification. The robustness and effectiveness of the whole system 

depends on the performance of each step as well as the compliance of these steps. In 

this chapter, based on the methodology of feature selection, a practical vehicle type 

classification system is proposed to address these problems.  

Comparing this with the large amount of literature on automatic vehicle detection and 

tracking (Sivaraman and Trivedi 2010) (Wang, Cui et al. 2012) (Zhang, Wu et al. 

2012) (Sun, Bebis et al. 2006), limited work has been reported in the field of vehicle 

classification. A summary of related work is shown in Fig.5.1. Most existing methods 

for classifying vehicle types are visual-based or non-visual sensor-based. Non-visual 

sensor-based methods employ buried inductive loops (Ki and Baik 2006) or radar 

(Urazghildiiev, Ragnarsson et al. 2007) to measure the sizes and lengths of vehicles. 

The main drawback of such systems is the complicated setup and high maintenance 

cost. On the other hand, large-scale deployment of traffic surveillance cameras and 

rapid development of image processing techniques have made visual-based vehicle 

type classification more and more popular.  

Visual-based vehicle type classification can be grouped into two categories: methods 
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Fig. 5.1 Current vehicle type classification methods. 

 

using the vehicle’s side view and methods using the vehicle’s front/rear view. For the 

side view examples, edge and model based methods have been widely used. Edge-

based approaches include parameterised edge models (Wei, Zhang et al. 2001), edge 

point groups (Ma and Grimson 2005) and weighted edge matching (Shan, Sawhney et 

al. 2005). Wu et al. (Wei, Zhang et al. 2001) proposed a parameterised edge model to 

describe the topological structure of vehicle, and then fed models into a multi-layer 

perceptron networks-based classifier. Although the classification rate was satisfactory 

with high-quality images, the authors stated that their method was limited when 

performing on low quality images. Ma et al. (Ma and Grimson 2005) associated edge 

points with (Scale-Invariant Feature Transform) SIFT based descriptors to guarantee 

the repeatability and sufficient discriminability of their proposed feature. Though they 



66 

 

reported impressive results, the method was time-consuming and fell short when 

views changed. Shan et al. (Shan, Sawhney et al. 2005) presented an edge-based 

method to match vehicle images captured from two non-overlapping cameras. The 

vehicle matching problem was considered as a same-different classification problem. 

The similarity of two vehicles from two cameras was calculated. After automatically 

collecting representative samples from same-different classes by a weak classification 

algorithm, a more discriminative classifier based on Fisher’s linear discriminates and 

Gibbs sampling was obtained. The main weakness of this method was that it required 

vehicle images captured from two different cameras. This camera arrangement was 

hardly used in current traffic surveillance systems. 

Model-based approaches that used prior vehicle shape information had been 

investigated (Dubuisson Jolly, Lakshmanan et al. 1996) (Lai, Fung et al. 2001) 

(Gupte, Masoud et al. 2002) (Hsieh, Yu et al. 2006). Jolly et al. (Dubuisson Jolly, 

Lakshmanan et al. 1996) proposed five classes of deformable 2D models to segment a 

vehicle from background. Although this method too depended on camera view and 

image quality to practice with real world condition, it explored a new path for vehicle 

type classification. In order to generate 3D models of vehicles (Lai, Fung et al. 2001) 

(Gupte, Masoud et al. 2002) (Hsieh, Yu et al. 2006) , vehicle appearance parameters, 

such as length, width and height were recovered from 2D projections of vehicles 

under a calibrated camera model. In (Hsieh, Yu et al. 2006), besides traditional 

parameters recovery, a feature named “linearity” was proposed to discriminate trucks 

from buses, which had very similar appearances. However, the complexity of stereo 

algorithms made these methods time-consuming. Moreover, in order to recover 3D 

parameters of a vehicle, both the vehicle side view and frontal/rear views were 

needed. Therefore, a specific camera arrangement was required. 

Inspired by the facial expression recognition, Zhang et al. (Zhang, Chen et al. 2006) 

extracted eigenvectors for type classification from side view images of vehicles using 

Principal Component Analysis (PCA). Ji et al. (Ji, Jin et al. 2007) classified vehicle 

types based on Gabor features bank. PCA and Gabor features bank were powerful 

methods to find a set of discriminative features that represent vehicles in a more 

compact and robust way. Traditional methods first built a feature space such as 

eigenspace in PCA method and Gabor features bank in Gabor feature method from 

training images. Then testing images were represented by the projection on the feature 
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space. The question of whether or not a uniform feature space can describe most 

discriminative features of images in different classes was usually ignored. Moreover, 

the method with the side view of vehicle easily failed for classification even when a 

slight camera view change occurs. 

Some researchers’ attention was attracted to the appearance structure of the vehicle’s 

front/rear for each vehicle type. Based on the SIFT descriptor, vehicle make and 

model recognition from the frontal views was investigated in (Conos 2006) (Psyllos, 

Anagnostopoulos et al. 2011). (Conos 2006) fed SIFT descriptors extracted from 

frontal view image into a kNN classifier. (Psyllos, Anagnostopoulos et al. 2011) used 

a neural network classifier to recognise the logo, manufacturer and model of a 

vehicle. Such a method entirely depended on the logo detection; it would fail if the 

logo cannot be detected correctly. Unfortunately, logos were usually very small in the 

image. 

Edge-based features sets were utilised in (Petrovic and Cootes 2004). From a vehicle 

frontal view, Petrovic et al. (Petrovic and Cootes 2004) extracted a set of features 

including Sobel edge, edge orientation, direct normalised gradients, locally 

normalised gradients, square mapped gradients, Harris corner, and spectrum phase. 

Based on these features, a simple nearest-neighbor classifier was applied. Although 

impressive recognition accuracy was achieved, calculating so many low-level features 

was time consuming.   

Some researchers’ attentions were attracted to the appearance structure of vehicle’s 

front/rear for vehicle type. Kuwabara et al. (Kuwabara, Yano et al. 2009) proposed an 

appearance structure with Gaussian Mixture Model (GMM) to recognise a vehicle’s 

type. The appearance model representing the rear view image of a vehicle includes the 

rear window, tail lights, and so on. However, the appearance model was established 

based on colour recognition, which made this method very sensitive to light 

conditions. Kafai et al. (Kafai and Bhanu 2012) described vehicle rear appearance 

using a feature vector representing a tail light, license plate, window, etc., thereafter, 

processed this feature vector by a Hybrid Dynamic Bayesian Network to classify 

vehicle. 

Moreover, global features were also used in vehicle type classification. Lee et al. (Lee 

2006) extracted from frontal view of vehicles texture descriptors such as contrast, 
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homogeneity, entropy and momentum. Based on these features, a classifier was 

trained through a three-layered neural network. 

In all aforementioned methods from frontal/rear view, accurate extraction of vehicle 

front/rear was a crucial step. Vehicle front/rear area was pre-defined according to the 

location of license plates (Lai, Fung et al. 2001) or logos (Gupte, Masoud et al. 2002). 

However, defining a vehicle’s front/rear area in this way was not ideal. Pre-defined 

vehicle front/rear area would possible inaccurate. Incorrect vehicle/rear extraction 

lead to unsatisfactory classification rate. In our method, we addressed this problem 

and developed an automatic vehicle front extraction method by combining license 

plate detection, vehicle segmentation and shadow removal.  

In this chapter, using the framework of feature selection, we proposed a more robust 

and more practical vehicle type classification system to address the aforementioned 

problems. At the beginning, we applied a quick and accurate AdaBoost method with 

the combination of Haar-like features and line segment features to localise the license 

plate (Peng, Xu et al. 2011). We used a background updating method to avoid the 

effect of lighting changes and obtained vehicle front width from an extracted binary 

mask. Thereafter, the vehicle frontal region was extracted by referring to the license 

plate’s location and the vehicle’s front width. After that, vehicle frontal images were 

projected into previously constructed multiple eigenspaces for type classification. To 

distinguish from building a uniform eigenspace by picking up a percentage of the top 

eigenvectors to represent all the target objects in traditional PCA method, we 

constructed multiple eigenspaces for different classes using an adaptive genetic 

algorithm (GA) to search the full set of eigenvectors with the goal of selecting a 

subset of eigenvectors encoding important information about each class image. This 

development enhances classification accuracy. In order to demonstrate the 

effectiveness of our method, our experiments evaluated the performance of each step 

as well as the compliance of these steps. 

5.2 Related work about PCA 

An object classification system using PCA involves two main steps:  

1) extracting principal components from training images and representing both 

training and test images by extracted components, and  
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2) training a classifier based on the eigenvector-represented training images using 

different machine learning methods.  

PCA intends to represent images in a lower dimensional space, which is usually called 

“eigenspace” consisting of eigenvectors. Eigenspace spans the principal components 

of the covariance matrix of the data. Eigenvectors is with a huge amount, which is 

total number of training images submitted one. We would like to use only 

eigenvectors that have a high separability power while ignoring or paying less 

attention to the rest. A typical strategy is picking a percentage of the top eigenvectors 

to represent the target object, independent of the classification task.  

Several researchers (O’Toole, Abdi et al. 1993) (Abdi, Valentin et al. 1995) (Valentin 

and Abdi 1996) (Yambor, Draper et al. 2002)  had found that different tasks made 

different demands in terms of the information that is needed to be processed, and that 

this information was not contained in the same range of eigenvectors. (Etemad and 

Chellappa 1997) found that the recognition information of eigenvectors did not 

decrease monotonically with their corresponding eigenvalues. Therefore, the common 

practice of choosing top eigenvectors was the not best method. The question of how 

to choose suitable eigenvectors became a concern. (Balci and Atalay 2002) selected 

eigenvectors that most contribute to classification using a neural network classifier. 

They also demonstrated that not all of the top eigenvectors contributed to correct 

classification and that some of them had been discarded by the network. In order to 

avoid the bias brought about by simply selecting top eigenvectors, some researchers 

utilised advanced methods to choose eigenvectors. (Sun, Bebis et al. 2004)  showed 

that the Genetic Algorithm (GA) was powerful in selecting most important 

eigenvectors. The number and range of eigenvectors were decided by evaluation on a 

set of validation images. These strategies were still with limitations, because a 

uniform eigenspace containing the same set of eigenvectors cannot encode the 

specific characters of various classes, even though the set of eigenvectors were 

selected by some optimal methods. For example, the most discriminative eigenvectors 

for different class vehicles (truck, bus, minivan or sedan) should be different. 

Therefore, it is extremely necessary to build for each class a specific eigenspace, 

which can describe the corresponding class best.  
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In our method, multiple eigenspaces rather than a uniform eigenspace were built for 

different class images. For each class, our feature selection method discarded 

insignificant eigenvectors while keeping the ones encoding the most useful 

information for the current class. In the training stage, in order to train the classifier, 

each training image was projected into the corresponding eigenspace. In the 

classification stage, a testing image was projected into all eigenspaces. Fast KNN was 

then applied for classification determination.  

5.3 Method overview 

Our proposed method consisted of three sets of data: training images, validation 

images and test images; and two steps: training, and testing. As shown in Fig. 5.2(a), 

on training stage, image normalisation processing was first applied to the training 

images and validation images, both of which consisted of manually cropped vehicle 

front images with 4 class labels (truck, bus, minivan, and sedan) to compensate for 

light variations, noise, etc.. A comprehensive set of eigenvectors were generated from 

normalised training images.  By evaluating 4 sets of normalised validation images, a 

genetic algorithm was carried out to build 4 eigenspaces for a truck, bus, minivan and 

sedan, respectively. Each set of eigenvectors encoded mostly important information 

about the corresponding vehicle type. Thereafter, each training image was represented 

by a vector of projection coefficients after projecting into its eigenspace.   

The classification procedure was demonstrated in Fig. 5.2(b). In order to quickly and 

accurately localise the license plate, we proposed a license plate localisation method 

rested on Haar-like feature and line segment features. After implementing background 

subtraction and shadow removal to extract the vehicle body in images, the width of 

vehicle front was learned. According to obtained license plate location and vehicle 

front width, the vehicle front can be extracted correctly. By projecting the vehicle 

front into the 4 previously constructed eigenspaces, 4 vectors of projection 

coefficients were obtained to represent the vehicle front. The vehicle was classified 

into a specific type after KNN searching for its represented vector within vector 

representations of training images.   
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Fig. 5.2 The procedures of vehicle classification system: (a) Training stage: 

building multiple eigenspaces and training classifier, (b) Classification stage: 

extracting vehicle front, projecting on multiple eigenspaces and classifying. 

 

5.4 Feature selection scheme for localising license plate and 

classifying vehicle type  

As demonstrated in Fig. 5.2, the whole system of vehicle type classification is 

complex system consisting of multiple modules, among which license plate 

localisation and vehicle type classification are the two most core ones.  

License plate localisation is the foundation of accurate extraction of vehicle front. The 

accuracy is the highest priority. According to the maximum dependency scheme, we 

propose Line Segment Feature (LSF) based on the special pattern of license plates. In 

order to speed up the process, we combine LSF with Haar-like features to generate a 

candidate set of features. Because Haar-like features are weak features, the generated 

candidate set contains huge amount of features. For achieving the optimal feature set, 

we utilised AdaBoost to produce strong features. This procedure becomes much faster 

than the traditional Haar-like—AdaBoost method with the introduction of LSF.  
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For vehicle type classification, we proposed an adaptive PCA method to select max-

dependent and min-redundant features to present the vehicle front through building up 

multiple eigenspaces than the single eigenspace in traditional PCA method. We will 

detail the advantages of our method in Section 5.8. 

5.5 License plate localisation 

5.5.1 Combination of line segment features and Haar-like features based on 

maximum dependency 

Fast and accurate license plate localisation was the crucial step in our system. We 

achieved this through a coarse-to-fine method. We firstly normalised the input image 

to reduce effect of various lighting condition and noise. We band-pass filtered the 

image and weighted the pixels using a Gaussian function centred on the image. The 

image was then normalised to have zero mean and unit standard deviation. The 

normalised image was shown as the top part of Fig. 5.3. 

 

Fig. 5.3 ROI of license plate detection, roughly detect ROI based on histogram 

pattern of license plate. 
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As shown in Fig. 5.3, we found that the intensity histograms of potential license plate 

regions, as the red lines, fluctuate wildly when we showed every horizontal line of 

image as intensity histograms. The initial ROIs of license plates were detected 

roughly and quickly, according to this feature. 

We further located license plates on ROIs based on the combination of line segment 

features and Haar-like features, which was proposed in our previous work (Peng, Xu 

et al. 2011). For LP detection, many previous researchers (Wang and Lee 2007) used 

AdaBoost in conjunction with Haar-like features. Compared to other low-level 

features, Haar-like features saved considerable computational cost since they were 

extracted from integral representations of an image rather than individual pixels. 

However, Haar-like features was very illumination-sensitive and the selected feature 

set was very large, which made the training process very time consuming and the 

classifying process unstable. In our method, we introduced line segment features. We 

first ran across ROIs with the Sobel operator to obtain the gradient of the image in a 

horizontal direction. The ROI of the license plate with detected vertical edges was 

shown in Fig. 5.4 (b). Binarisation was then deployed on ROI to remain significant 

edges, shown in Fig. 5.4(c). Finally, line segments were obtained by applying Hough 

Transform, as the red lines shown in Fig. 5.4 (d). 

We constructed three properties of these line segments that discriminate license plate 

regions from their background. These three properties are density     , directionality 

    and regularity   : 

{

               

    
   

   

                       )

                  

                   (5.1) 

As shown in Fig.5.4 €,       was the number of line segments in a block while 

        indicated the size of block by the number of pixels in this block. It tended to 

have a high density of line segments in a license plate region. 
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Fig. 5.4 License plate localisation based on line segments features including 

Density, Directionality and Regularity, (a) Original ROI, (b) ROI with detected 

vertical edges, (c) Binarised ROI, (d) ROI with detected line segment, (e) Line 

segment features.  

 

Moreover, rather than being distributed in a disorderly fashion, line segments inside 

license plate tended to be approximately vertical. We utilised directionality     to 

describe this pattern of line segments. Still referring to Fig.5.4,    was the angle 

between the vertical axis (y-axis) and the perpendicular of the line segment. A line 

segment with    within range [80, 100] was regarded as a vertical stroke. As shown in 

Fig. 5.4, both    with   and    with    were considered as vertical strokes.    
 was 

the number of vertical line segments in a block while    
was the number of all line 

segments in this block. The LP region should have high value of    . Finally, 

regularity was introduced to measure the regular repetition of line segments inside LP. 

   
 
was the inter-distances of vertical line segments in a block. The lower value of R 

indicates more regularity of the block. The localised license plate was shown as a red 

rectangle in Fig. 5.4 (d).  

5.5.2 Feature subset selection by AdaBoost to achieve minimum redundancy 

AdaBoost (Das 2001) is a popular and impressive method of selecting a subset of a 

large amount of Haar-like features and combine many weak classifiers into a strong 
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one. After constructing weak classifiers, one of which is based on a Haar-like feature, 

the training samples are re-weighted to emphasise ones that are incorrectly classified. 

Then the next weak classifier is trained with re-weighted samples. The predictions 

from those weak classifiers are combined through weighted votes to produce the 

prediction of a strong classifier. These weights are determined by classification error 

of each weak classifier.  

After integrating line segment features into a traditional cascade of AdaBoost 

classifiers with Haar-like features, we dramatically drove down the amount of 

demanded Haar-like features, from 412 in traditional method to 180 features  in  our  

experiment,  as  well  as  the  training  time.  With  a  rejection  cascade  consisting  of  

13  nodes,  as illustrated  in  Fig. 5.5, a set of LP candidates were detected. We chose 

the fittest one after implementing non-maximal suppression. 

 

Fig. 5.5 Rejection cascade trained from line segment features and Haar-like 

features. 
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5.5.3 Vehicle type classification 

As analysed in previous sections, we argued classifying vehicle type based on vehicle 

front is practical and robust. The vehicle front is usually the part of the vehicle body 

with the most details such as headlamps, blinkers, grille, logos, and license plates. It is 

very hard to use patch features such as SIFT and SURF to describe the vehicle front. 

However, same types of vehicle have fronts with similar patterns and designs. It is 

coincident that people can recognise the type of a vehicle depending on the view of 

vehicle front only. Eigenvectors are a powerful approach to describe the general 

pattern of objects. Eigenfaces are a set of eigenvectors used for human face 

recognition. It is considered as one of the first successful examples of facial 

recognition technology. Rather than projecting training samples of all classes in a 

single Eigenspace in traditional methods, we trained the classifier with multiple 

Eigenspaces.   

5.5.3.1 Vehicle front extraction 

Based on localised license plates, the vehicle front is extracted using background 

subtraction. We deal with this task using two methods for night-time and daylight, 

respectively.  

Daylight case 

For classification, each vehicle front should be detected and extracted. We 

implemented two steps:  

1) vehicle front width was obtained by background subtraction; and 

2) vehicle front was extracted based on vehicle width and the location of detected 

license plate.  

License plate localisation has been explained in the last section. In this section, we 

dealt with vehicle front extraction, which were different for daylight cases and 

nightlight cases. 

The situation was complicated in the daylight case. For daylight cases, we not only 

needed to subtract the background, but also remove shadows of the vehicle. To make 

our background subtraction algorithm robust, we captured several road images 
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containing no vehicle, under different lighting and weather conditions and then 

averaged them as a background. The subtraction operation was presented as follows: 

      )  {
     |      )        )|    

           
                     (5.2) 

where    was the difference image between input image and background image,     

was the ROI region containing license plate,   was the correspondent ROI on 

averaged background image, and     was a predefined threshold which is chosen as 

the average of    . After subtraction, a simple morphological operation was applied to 

remove noise. However, due to the shadow, we cannot obtain the exact location of the 

vehicle after background subtraction. 

In order to remove the shadow, we further implemented three steps proposed in 

(Wang, Chung et al. 2004) on the image processed by background subtraction: 

1) Illumination assessment for the detected ROI to determine whether there were 

shadows present in this figure. 

2) Through determining the direction of illumination and sampling shadow point, 

the attributes including average intensity and brightness & contrast of shadows were 

calculated. 

3) The vehicle front was exactly extracted by three criteria: preserving bright 

pixels; preserving pixels with attributes different from attributes of shadow; 

preserving pixels nearby object edges. 

Night-time case 

When the input image was captured in nightlight, we easily obtained vehicle front 

width using above background subtraction technique, as there was no shadow that 

need to be removed. 
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5.5.3.2 Vehicle front extraction  

 

Fig. 5.6 Vehicle front extraction; the vehicle front is extracted correctly based on 

license plate localisation and foreground segmentation. 

With vehicle front width and location of a license plate, we further extracted the 

vehicle front. As shown in Fig. 5.6, the height of the vehicle front was four times the 

height of the detected license plate. Moreover, the rectangle of the vehicle front shares 

it’s bottom line with the license plate. 

5.6 Eigenvectors extraction  

 

Fig. 5.7 Image pre-processing procedures including converting to greyscale, 

convoluting by band-pass filter and normalising the size of image. 

 

Fig. 5.8 Eigenvectors generation from training images; (a) an example of training 

image (b) average image (c) the first eigenvector (d) the last eigenvector. 
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In image classification, it was impossible to compute the difference between two 

images pixel-by-pixel when comparing these two images, because it was too time-

consuming and the total noise contributed by every pixel will be very high. This noise 

could be anything that affects a pixel’s intensity value. Therefore, we usually 

compared two images in a subspace with much lower dimensionality than the total 

pixels’ number. PCA was a popular method to find the subspace, namely eigenspace. 

In our method, eigenvectors extracted from normalised vehicle front images were 

used for vehicle type classification. The eigenvectors described invariant 

characteristics of vehicle front images. Theoretically, the total number of eigenvectors 

we could find is the number of all images minus one. However, in practice, we only 

kept the ones with good separation capacity. 

It was extremely important to apply image pre-processing techniques to standardise 

the images before eigenvector generation. Most image classification algorithms were 

extremely sensitive to many factors such as lighting conditions and image size. In 

order to reduce the adverse effect of various lighting conditions, we first converted all 

vehicle front images to greyscale and smooth them with a band-pass filter. Finally, we 

transformed all processed images into a fixed size. The image pre-processing 

procedure was explained by an example image in Fig. 5.7. 

After image pre-processing, we obtained a set of regularised training vehicle front 

images. For training, we needed to label manually all images into four categories as 

above: truck, bus, minivan, and sedan. Every image can be represented as a   by   

matrix that   and   being image height and width, respectively. In order to compute 

eigenvectors conveniently from all image matrices, we needed to store all images in 

one matrix. We first reshaped every image matrix to a      vector. With   being 

the number of training images, we stored all these images into a matrix of   columns 

  [        ]. The length of    is     . Then we can compute the average image 

of all training images and the difference images: 

  
 

 
∑   

 
                                                (5.3) 

where   was the average image as shown in Fig.5.8(b) while   was a difference 

image. Both of them were represented by a     vector.   was a matrix storing all 
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difference images. The covariance matrix of   was: 

  
 

 
∑     

   
                                            (5.4) 

We needed the eigenvectors of  . However, it was infeasible to calculate the 

eigenvector in (5.4) since     was a too large a matrix. In our experiment, the used 

vehicle front image was the size of 450×150. This made the size of     67500×7500. 

This computation burden was avoided by the method in (Turk and Pentland 1991). 

Suppose    was an eigenvector of      and     was the associated eigenvalue, then: 

                                                     (5.5)

where we can deduce     is an eigenvector of     . This method greatly reduced the 

computation complexity since the size of    is only    .  

As explained above,     numbers of eigenvectors would be generated from   

training images. Fig. 5.8 (c) and Fig. 5.8 (d) showed the first and last eigenvectors in 

our experiment, respectively. As explained in Section 5.2, rather than selecting a set 

of eigenvectors to build a uniform eigenspace, we picked up the eigenvectors with 

biggest discriminability for each class to build the specific eigenspace. Each training 

image and test image was then represented as projection coefficients after being 

projected into the corresponding eigenspace.  

5.7 Building multiple eigenspaces 

We built multiple eigenspaces from different classes of training images using a 

Genetic Algorithm (GA). GA has been used to select eigenvectors before (Sun, Bebis 

et al. 2004), but for building a single eigenspace. GA was inspired from the biological 

mechanisms of reproduction.  

GA operated iteratively on a population of eigenvectors, which were encoded as a 

string of binary symbols (selected eigenvectors are represented as 1, others are noted 

as 0). A randomly generated set of such strings forms an initial population from which 

the GA starts its search. As shown in Fig. 5.9, the genetic search process is iterative: 

evaluating, selecting, and recombining strings of the eigenvectors in iterations until 

reaching a termination condition. For each vehicle class, the eigenspace was built via 

this procedure with the corresponding class of validation images.  
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Fig. 5.9 The procedure of eigenvectors selection using genetic algorithms. 

 

In our experiment, the termination condition depended on iteration number and 

accuracy range. The search process iterated until reaching accuracy 0.999 or 

maximum iteration number 200. Consequently, we chose the string of eigenvectors 

with highest accuracy. If there were more than two strings with highest accuracy, the 

string with less population of eigenvectors was preferred because the goal of feature 

selection was to use less features to achieve the same or better performance.  

There were 3 basic operators guiding the search: selection, crossover, and mutation. 

We chose these operators according to the evaluation of each string. The evaluation 

determined which set of eigenvectors were better. Selection of a string depended on 

the string’s fitness relative to those of other strings. The string with better fitness was 

more likely to be selected. With a crossover probability, we crossed over two selected 

strings to form a new string. With a mutation probability, we just flipped each binary 

value in the string to generate a new string.  

The GA method setting was as follows: 

Accuracy range: 0.5-0.999 

Initial population size: 2500 

Selection: Parent population size was N, the offspring size was 2N. We selected the 

best N from the 3N that was the combination of parent population (N) and offspring 

(2N). 
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Crossover: Uniform crossover that each binary value of the offspring was selected 

randomly from the corresponding parental strings. The crossover probability was 

0.66. 

Mutation: The mutation probability was 0.04. 

5.7.1 Multiple eigenspaces vs. single eigenspace 

The goal of feature selection was to enhance the classification accuracy with a more 

compact feature set. Using our eigenvector selection method, we built specific 

eigenspaces for each class (truck, bus, minivan, and sedan). Fig. 5.10 showed four 

eigenspaces containing different sets of eigenvectors that were constructed by GA 

from different classes of training images and the single eigenspace that was built by 

GA from the whole set of training images. As shown in Fig. 10, the multiple 

eigenspaces were much more compact than the single eigenspace – 46 eigenvectors 

out of 200 for truck  

 

Fig. 5.10 Eigenvectors distribution in multiple eigenspaces and single eigenspace, 

respectively. 



83 

 

eigenspace, 52 eigenvectors out of 200 for bus eigenspace, 55 eigenvectors out of 200 

for minivan eigenspace, 61 eigenvectors out of 200 for sedan eigenspace; and on the 

other hand, 105 eigenvectors out of 200 for a single eigenspace.  

Different eigenvectors encoded different characteristics of target objects. Each vehicle 

front image can be represented by eigenvectors weighted by the projection 

coefficients after being projected into the corresponding eigenspace.

 

Fig. 5.11 Reconstructed images from eigenvectors: (a) Normalised vehicle front 

images (b) Reconstructed images from eigenspace consisting of top 200 

eigenvectors (c) Reconstructed images from single eigenspace (d) Reconstructed 

images from multiple eigenspace. 

 

For demonstrating the accuracy of the proposed eigenvector selection method, we 

reconstructed vehicle front images using selected eigenvectors only. In order to 

compare with single eigenspace, we also reconstructed the same vehicle front images 

using the top 200 eigenvectors and a uniform set of eigenvectors selected by the GA 

in (Sun, Bebis et al. 2004). The first row in Fig. 5.11 showed the normalised vehicle 

front images. The fourth row shows the images reconstructed by proposed multiple 

eigenspaces. The second row and the third row showed the images reconstructed by 

top 200 eigenvectors and a uniform set of GA selected eigenvectors. In the fourth row, 

all reconstructed images seemed to be normalised regarding illumination. Of 

particular interest were the reconstructed images in the fourth column which were 

brighter than the others. It appeared that the eigenvectors encoding illumination 
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information were excluded in the procedure of eigenvector selection, as illumination 

was not a critical factor for the discrimination among different vehicle types. 

Furthermore, the reconstructed images in the second and third rows show more details. 

All these images looked quite different. All images in the fourth row, by contrast, are 

smoother. As we explained before, discriminative eigenvectors should encode the 

specific characteristics for each class.  In our multiple eigenspaces, irrelevant and 

redundant information were removed for each class. Therefore, the reconstructed 

vehicles showed the common characteristics in the class rather than individual 

identity information. In next section, the advantage of multiple eigenspaces over 

single eigenspace will be further analysed via comparison experiments. 

5.8 Experiments  

5.8.1 Front View Data Collection 

 

Fig. 5.12 Experiment images including 4 types of images: truck, bus, minivan 

and sedan. 

 

As we don’t have a public database with a sufficient number of images capturing 

vehicle frontal/rear views, we have established our own database, which includes 

3327 images of vehicle frontal views. Everyone can access it for research purposes 

from http://dl.dropbox.com/u/52984000/Database1.rar. We hope it can be beneficial 

for continuing research in this topic. 

 

We collected images of passing vehicles on a highway using a Sony HDR-SR12 

camera. The camera, still-mounted on a pole, looks down and faces oncoming 

vehicles on a highway. The images are taken from 20
th

 June, 2011 to 22
nd

 June, 2011. 

http://dl.dropbox.com/u/52984000/Database1.rar
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The images were taken in both of daylight with sunny and partly cloudy conditions 

and Night-time. As there are many more vehicles during day than during the night, 

there was a large difference between the numbers of daylight images and Night-

timeimages. The total number of daylight images and night images are 2583 and 744, 

respectively. All images were with a size of 1600*1264 pixels. All images were 

manually labeled with one of the four classes: truck, bus, minivan, and sedan. 

Fig.5.12 shows examples of captured images. All collected images were separated 

into two groups: 2183 daylight images and 344 nightlight images for training; 400 

daylight images and 400 nightlight images for testing. Table 5.1 indicates the numbers 

of each vehicle class in our experiments. 

Table 5. 1 Experimental data collection. 

 Daylight  Nightlight  

 Training  Test Training Test 

Truck 551 100 156 100 

Bus 410 100 56 100 

Minivan 390 100 55 100 

Sedan 832 100 77 100 

Total 2183 400 344 400 

 

5.8.2 License plate localisation evaluation 

We localised LP with a rejection cascade, which consists of 3 classifiers based on line 

segment features and another 4 classifiers based on Haar-like features. For classifiers 

training, our experimental data consisted of 800 images containing LPs and 1000 

images without LPs. Among LP contained images, 800 images were taken as positive 

samples, in which there were 800 visible LPs. The LP regions of 800 images were 

cropped manually, resized to images of size 60×0. We then employed illumination 

normalisation on all images to reduce negative effects caused by various lighting. For 

negative samples, 6000 image blocks of size 60×0 pixels were drawn from 1000 

background images. Some examples of the cropped LP images are shown in Fig. 5.13. 
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Fig. 5.13 Cropped license plate images for training. 

As shown in Table 5.2, our method utilised much fewer features than the traditional 

Haar-like feature based methods and therefore saved considerable time in the training 

stage. After adding line segment features into the Viola-Jones framework, a seven-

node rejection cascade was obtained with only 180 features including 3 line segment 

features and 177 strong features based on Haar-like features. With the Viola-Jones 

framework alone, the rejection cascade consisted of 13 nodes with 412 features. 

Moreover, the training time required by our method was 5 days, compared to 14 days 

needed by traditional methods. 

Table 5. 2 Comparison between Haar-like features based method and adaptive 

Haar-like features based method. 

  HaLF LSF+HaLF 

Training nodes 13 7 

features 412 180 

Time 14 days 5 days 

Testing PD 86.2%(250/290) 93.4%(271/290) 

FD 7.2%(21/290) 3.1%(9/290) 

Missed 6.6%(20/290) 3.5%(11/290) 

*HaLF is Haar-like Feature, LSF is Line Segment Feature, PD is Positive Detection, 

and FD is False Detection
  

We compared our method with traditional Haar-like features based methods by 

implementing them on the same database. We used a public database containing 291 

images taken in various parking lots in San Diego, California. All test images were a 

size of 640×80 pixels; and each image only contained one LP. The database link is 

http://vision.ucsd.edu/belongiegrp/research/carRec/car_data.html. Correct detection 

http://vision.ucsd.edu/belongiegrp/research/carRec/car_data.html
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was defined as detected areas overlaid with at least 85% of ground truth regions. 

Using our method, we found 271 LPs correctly while missed 11 LPs and detected 9 

other objects as LPs falsely. By contrast, using the traditional method, 250 LPs were 

detected correctly while 20 LPs were missed and 21 were false detections. In addition, 

the average time for processing one image was 25 ms/frame vs. 70 ms/frame by our 

method and the traditional method, respectively. Obviously, the improvement in 

processing speed was important as we can save much time for following processing. 

5.8.3 Vehicle front extraction evaluation 

Table 5. 3 Comparison between proposed automatic vehicle front extraction and 

pre-defined vehicle front. 

 Truck Bus Minivan Sedan Total 

Test Images 189 190 195 180 754 

CVFE by our method 180(95.2%) 190(100%) 190(97.4%) 171(95%) 731(96.9%) 

CVFE by pre-

definition 

150(79.4%) 190(100%) 187(96.0%) 130(72.2%) 657(87.1%) 

* Test Images are the test images with correct license plate detection; CVFE stands 

for correct vehicle front extraction 

With license plate localisation, the vehicle front was extracted by background 

extraction and noise removal. Correct vehicle type classification was rested on 

accurate vehicle front extraction. It was extremely necessary to evaluate our proposed 

vehicle front extraction method. To avoid the bias brought by incorrect localised 

license plates, we evaluated  the images with correct license plate localisation. Correct 

vehicle front extraction was defined as extracted areas overlaid with at least 85% of 

ground truth regions. For comparison, we extracted vehicle front using pre-definition 

method (Conos 2006), which extracts vehicle fronts as        and        , 

where   ,    
vw , 

vh were the width and the height of the vehicle front and w, h were 

the width and the height of the localised license plate, respectively.  

As shown in Table 5.3, our method achieved much better results (96.9%) than the 

manual definition method (87.1%). It was because a fixed rectangle cannot cover 

various vehicle fronts. For example, as shown in Fig. 5.14., using a defined vehicle 
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front area, we extracted incorrect fronts in the cases of a big truck and a small sedan, 

because the front sizes of the two are either too big or too small. On the other hand, 

with our proposed method, all fronts of the two vehicle types can be extracted 

correctly.  

 

Fig. 5.14 Incorrect vehicle front extraction by pre-definition. 

 

 

Fig. 5.15 Performance lines of different vehicle classification method; blue line is 

for ground truth, red is for MGA, green is for SGA, purple is for TES50, light 

blue is for TES200. 
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5.8.4 Vehicle type classification evaluation 

In order to show the improvement of our proposed multiple-eigenspace method with 

genetic algorithm (MGA), we compared our method with single-eigenspace methods: 

1. Top eigenvectors selection (TES): building an eigenspace using the top 50, 

100, 150, and 200 eigenvectors, respectively. 

2. Single-eigenspace with genetic algorithm (SGA): building an eigenspace with 

eigenvectors selected by GA (Sun, Bebis et al. 2004). 

 

Fig. 5.16 Correct vehicle type classification rate using different methods, in order 

to avoid the bias brought about by incorrect vehicle front extraction, we evaluate 

classification on testing images with correct vehicle front extraction only (731) 

rather than the whole testing image set (800). 

 

For avoiding bias brought about by incorrect vehicle front extraction, we used the 

vehicle front images extracted correctly in the last section for vehicle type 

classification evaluation. 731 testing images with correct vehicle front extraction 

contained trucks (180), buses (190), minivans (190), and sedans (171). In the Fig. 

5.15, the blue line showed the ground-truth classes of each vehicle front; the red, 

green, purple and light blue lines represent the classifications using MGA, SGA, 

TES50 and TES200, respectively. In order to demonstrate the performance 

comparison clearly, we indicated the classification results using four steps: first step 

(truck), second step (bus), third step (minivan) and fourth step (sedan). On each 
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performance line, the fluctuations indicated incorrect classification. As shown, the 

ground truth line was wholly smooth on each step while fluctuations happened on 

other lines. All methods work better on truck and sedan images than on minivan and 

bus images. This corresponded to the visual observation; confusion was likely to 

happen between buses and minivans as sometimes they share some common 

characteristics in terms of their appearance. As shown in Fig. 5.15., the performance 

line (red) of multiple eigenspaces was much more stable than others, indicating that 

multiple eigenspaces method outperforms other methods. 

 

Fig. 5.16. showed the correct classification rate for all the approaches tested. The first 

column to the fourth column are the results using MGA, SGA, TES50 and TES200, 

respectively. The results are 95.1%, 89.9%, 86.0% and 85.0%, respectively. Our 

proposed MGA method achieved the highest classification rate. 

5.8.5 Degree of step compliance and method limitations 

 

Fig. 5.17 Main steps and step compliance in our method. 

 

As explained at the beginning of this section, the vehicle type classification system is 

a complicated system, which contains more than one step. Only good performance 

achieved in each step can lead to accurate and robust vehicle type classification. As 

shown in Fig. 5.17, our proposed vehicle type classification method contains 4 main 

steps: license plate localisation, vehicle front extraction, projection on eigenspace, and 

type classification. A high degree of compliance on each step contributes to a final 

and accurate result. Still referring to Fig. 5.17, each step should be implemented 
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correctly:  

1) correct license plate localisation that is defined as localised license plates overlaid 

at least 85% of ground truth area.  

2) correct vehicle front extraction that is defined as extracted vehicle fronts overlaid at 

least 85% of ground truth area.  

3) extracted vehicle front image is projected into the constructed multiple 

eigenspaces. 

4) correct determination made by trained classifier.  

Though our method is robust in all these steps as shown by experimental analysis, we 

experienced two types of failure: incorrect license plate localisation and vehicle front 

extraction. Though the effective performance of both license plate localisation and 

vehicle front extraction were evaluated in Section 5.9.2 and Section 5.9.3, the failures 

of them are indeed nuisances as they are fundamental for the following processes. 

 

Fig. 5.18 “Lucky” Correct classification, some “lucky” correct classification 

happened even when a license plate or vehicle front is detected incorrectly. 

 

When we used the proposed MGA on the whole set of test images, the correct 

classification is 88.8% (710/800). The result was much lower that the classification 

rate demonstrated in last section, because the adverse effects brought by wrong 

license plate localisation and vehicle front extraction. It was interesting to note that 
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the correct classification rate for the whole set of test images should be 86.9% 

(695/800) in theory, as we classified 695 images as shown in Fig. 5.16. The actual 

classification rate was a little higher because of some “lucky” correct classifications. 

As shown in Fig. 5.18, the system occasionally happens to make correct 

classifications even though it has wrongly localised the license plate and vehicle front.  

5.9 Conclusion 

This section validates the methodology of feature selection by a practical and robust 

vehicle type classification system. This system classifies a vehicle into one of four 

classes (truck, bus, minivan, and sedan), based on a vehicle’s front view. Our method 

extracted the vehicle front region automatically. To enhance the classification rate, we 

utilised an adaptive PCA method with multiple eigenspaces in classification. The 

comparison experiments demonstrated the advances of the proposed method. Finally, 

we made our database including 3327 vehicle images available to the public. This 

may help to further research in this area.  

The schemes of maximum dependency and minimum redundancy guide the 

implementation of this system. According to the maximum dependency scheme, we 

propose Line Segment Feature (LSF) based on the special pattern of license plates. In 

order to speed up the process, we combine LSF with Haar-like features to generate a 

candidate set of features. Because Haar-like features are weak features, the generated 

candidate set contains large amount of features. For achieving the optimal feature set, 

we utilised AdaBoost to produce strong features. This procedure becomes much faster 

than the traditional Haar-like— AdaBoost method because of the introduction of LSF.  

For vehicle type classification, we proposed an adaptive PCA method to select max-

dependent and min-redundant features to present the vehicle front through building up 

multiple eigenspaces than the single eigenspace in traditional PCA methods.  
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Chapter 6 Feature Selection for Pedestrian Counting 

The content in this chapter has been published in (Peng, Xu et al. 2012). 

The content in this chapter has been included in the manuscript “Fast and Stable 

Pedestrian Counting System”, which has been submitted to the journal “Multimedia 

Tools and Applications”.  

6.1 Background 

Accurate detecting and counting of pedestrians in video sequences represents an 

essential component in a wide range of applications in ITS. In traffic control, 

automatic pedestrian detection and counting can be used to enhance safety and 

improve timing of traffic. In public place surveillance, pedestrian detection and 

counting is an important indicator for congestion, delay or other abnormalities. 

Furthermore, accurate pedestrian detection and counting provides pedestrians’ images 

for further analysis with the aim to estimate body poses, recognise actions or identify 

faces.  

Although many advanced works on pedestrian detection and counting have been 

conducted in the previous two decades, many of them have restrictions: the 

background must be simple, occlusions must be few, image resolution must be high, 

or don’t require real-time processing speed. However, obviously, real scenes always 

include simple and complicated backgrounds, and occlusions usually happen. 

Moreover, real-time processing is substantially significant in visual surveillance 

system. In this chapter, we intend to propose an effective method for pedestrian 

detection and counting, which could be used to address the aforementioned limitations. 

Our objective is to achieve robustness and high accuracy rates whilst maintaining 

real-time (>25 fps) performance in both simple and complicated scenarios. 

Current methods for people-counting can be classified into two categories: detection-

based and map-based methods. Detection-based methods estimate the number of 

people by identifying individuals in the scene. These methods determine the number 

of pedestrians and localise them simultaneously whereas cope with high crowd 

density and occlusions at the same time. Map-based methods ascertain the number of 

pedestrians in the scene through establishing the relationship between the pedestrian 
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number and certain features extracted from the scene. Though their processing is 

usually quick, they are very sensitive to noise. 

In this chapter, we propose a blob-based method. After segmenting the foreground, 

we detect the contours using multi-scale analysis. Then the foreground pixels are 

divided into different blobs independent from each other by detected contours. 

Precisely, each blob contains zero, one or several pedestrian(s). A new model with 

hybrid features consisting of low-level and high-level features was utilised to 

represent each blob. A classifier based on these extracted features is trained to 

estimate pedestrian numbers within each blob. Finally, blob tracking with the analysis 

of blob match, split or merge was proposed to optimise the estimation of the 

pedestrian number. Taking advantage of Graphics Processing Units (GPU) 

acceleration, we implemented our method using Computer Unified Device 

Architecture (CUDA), which was developed by Nvidia for graphics processing and 

parallel computing. 

The remaining chapter was structured as follows: Section 6.2 presents previous work 

for pedestrian detection and counting.  An overview of our method is then provided in 

Section 6.3. Section 6.4 describes the core part - features selection. We introduce the 

procedure of motion analysis for improving performance in Section 6.5. Comparison 

experiments with other popular methods are shown in Section 6.6. This chapter is 

concluded in Section 6.7. 

6.2 Related work on pedestrian counting 

Various approaches pertaining to pedestrian detection and counting have been 

proposed in the last twenty years. As aforementioned analysis describes, these 

methods usually belong to one of two categories: detection-based methods and map-

based methods.  

Human appearance models were usually used in detection-based methods. These 

methods usually slide the whole video frame with scalable window and classify the 

window image, after training classifiers based on extracted features with machine 

learning methods. Based on pedestrian body shape, (Dalal and Triggs 2005) proposed 

a pedestrian detector with Histogram of Oriented Gradient (HOG) features. Though 

the authors demonstrated impressive pedestrian detection performance, this method 
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was expensive in computation, sensitive to camera angles and very limited in the 

occlusion cases. In (Zhao, Delleandrea et al. 2009), a method based on face detection 

and tracking was proposed and free camera viewpoint was achieved. Undoubtedly, 

using the face as a reference rather than the entire body could be more reliable since 

faces are not generally obscure in surveillance cameras. Unfortunately, this method 

was invalid when pedestrians are not facing to camera. In (Li, Zhang et al. 2008), 

authors trained classifiers based on HOG heads and shoulders’ features with Adaboost 

framework to detect people in each frame. Methods based on head detection were 

more robust than face-detection-based methods, as they did not require pedestrians to 

face towards the camera. However, neither method could obtain a promising result 

when video definition was low or environment was complex, as both the face and 

head were very small.  

An interesting method for individual detection was raised in (Rodriguez and Shah 

2007). The method learned a set of pedestrian posture clusters, and a codebook of 

local shape distribution for pedestrians in various postures. The method initialised the 

pedestrian segmentation by the corresponding posture clusters in the codebook and 

evolved contours to obtain precise and consistent segmentations. The paper showed 

impressive results even in crowd scenes. However, the segmentation initialisation was 

risky and contour evolvement was high in computational complexity.  

Besides this, another major drawback of most individual detection and counting-based 

methods is that they assume there is a distinct visual separation between individuals. 

Only under this assumption, can the aforementioned methods of individual detection 

work satisfactorily. However, this assumption is not the common case in surveillance 

videos. Furthermore, pedestrians are often severely occluded and visually inseparable, 

as shown in Fig. 6.1.  

Meanwhile, the map-based methods can be further classified into two groups. Some 

methods tried to establish the relationship between the number of pedestrians and the 

features of the whole image. The other methods counted the pedestrian number for 

each moving group, after segmenting moving objects from their backgrounds. 
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Fig. 6.1 Occlusion scenario in surveillance video. 

 

Researchers utilised global features of the whole frame, such as texture information 

(Benfold and Reid 2009), fractal dimension (Benfold and Reid 2009) and invariant 

orthonormal Chebyshev moments (Rahmalan, Nixon et al. 2006) to estimate 

pedestrian numbers on each frame. Nevertheless, global features were highly sensitive 

to illumination changes. Therefore, these methods do not work well in the open air, 

where light changes correspondingly at different time points. Moreover, these 

methods can only estimate the numbers of pedestrians roughly in the video frame.  

In (Kilambi, Ribnick et al. 2008), a method provided that used geometric projections 

to estimate pedestrian numbers in moving groups. The method required prior 

knowledge of camera setting and accurate camera calibration to learn the estimation 

for the pedestrian number. The method showed promising results in both outdoor and 

indoor environments, whereas prior knowledge was usually unavailable in reality. The 

method in (Albiol, Silla et al. 2009) assumed that each pedestrian, on average, had a 

particular number of corners and then determined pedestrian number in a moving 

group by analysing detected corners. While the number of corners detected on each 

pedestrian differed considerably due to variations in camera angle, distance from 

people to camera and video definition. (Kong, Gray et al. 2005) proposed a method 

that extracted features dependent on foreground segmentation and edge detection. 

Though the authors indicated their method took into account feature normalisation to 

deal with perspective projection and different camera orientation, the method deviated 

significantly by the edges detected from the background. Moreover, homograph 

calculation required in this method was difficult to achieve. Another two methods 

(Ryan, Denman et al. 2009), (Ryan, Denman et al. 2010) extracted several features 
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from each detected moving group. Based on these features, the classifier was trained 

using neural network or a linear model. Likewise, in consistence with most of 

aforementioned methods, these methods determined the pedestrian number of moving 

groups out of the assumption that segmented foregrounds were pedestrians. It was 

worth noting that in surveillance video, no foreground segmentation method can 

segment pedestrians only. Discriminating pedestrians from other segmented objects 

such as moving vehicles, shaking tree branches and running cats, is required.  

Moreover, computational load always came to a bottleneck. Most of the 

aforementioned methods utilised repeated processing techniques such as the slide-

window algorithm (Dalal and Triggs 2005) (Zhao, Delleandrea et al. 2009) (Li, Zhang 

et al. 2008) (Rodriguez and Shah 2007) and the pixel-wise calculation algorithm 

(Kilambi, Ribnick et al. 2008) (Albiol, Silla et al. 2009) (Kong, Gray et al. 2005) 

(Ryan, Denman et al. 2009) (Ryan, Denman et al. 2010), which were of significantly 

high computational complexity. Because of the expensive computation, some of these 

methods could hardly perform in real time.  

As analyzed in Chapter 2, low-level features usually describe subtle details of an 

object but are time-consuming. On the other hand, high-level features represent shape 

and spatial information of objects, and usually have a low computational load. 

Pedestrian shapes have features discriminating them from other objects. That is why 

we can easily recognise pedestrians by silhouette. In order to guarantee the accuracy 

and real-time processing, we utilised hybrid features combining low-level features 

and high-level features in our approach to counting pedestrians. Moreover, we 

implement the parallel computing architecture in our system to boost the speed. 

Experiments showed our system can achieve real-time processing even on HD 

(1920×1080 pixel
2
) surveillance video.  
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6.3 Method overview 

 

Fig. 6.2 Method Overview of our pedestrian counting system. 

 

 

Fig. 6.3 Pedestrian counts are the summation of estimated counts of all moving 

groups. 
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As shown in Fig. 6.2, our method consisted of two stages: training, and testing; and 

two processing parts: host, and GPU processing. In both the training and testing 

stages, the image was acquired by the host, copied into GPU memory and then 

processed by the GPU.  

In training stage, the method captured and copied training videos into GPU memory 

frame by frame. Extended Gaussian mixture model was implemented on frames for 

foreground segmentation. The method then removed noise from the segmented 

foreground as well as kept information of interest by median filter. Separate blobs are 

detected.  It indicates moving objects, which included single pedestrian, several 

pedestrians or other objects. Relevant features were extracted from each moving blob. 

Moving blobs were annotated manually as the following: blobs including a single 

pedestrian was annotated with 1; blobs including several pedestrians were annotated 

with the pedestrian number of the corresponding blob, which were usually from 2 to 

10; blobs of other objects were annotated with 0 unanimously. Then annotated blobs 

with extracted features were learned by Support Vector Machines (SVMs) for training 

the classifier. During testing stage, blobs were detected and features were extracted 

from testing frames based on the same methods as in training stage. After this, the 

blobs with extracted features were grouped according to trained classifier. In the next 

step, the classified pedestrian number of each moving blob was optimised by blobs 

tracking, which was based on a novel analysis of blobs split and merge Eventually, 

the total pedestrian number of each image was the summation of pedestrian numbers 

of all blobs, as shown in Fig. 6.3.  

6.4 Feature selection scheme for counting pedestrian 

Our method detected blobs, after segmenting foreground using extended Gaussian 

mixture model. Nine highly relevant features were then extracted from each blob. 

According to the feature selection strategy, we choose features based on max-

dependency and min-redundancy. By accumulating occurrences of gradient 

orientation in localised portions of an image, HOG is an impressive shape-based 

method for pedestrian detection. However, as the analysis in Section 6.2 discusses, 

HOG is not a suitable feature for our application, the aim of which is counting 

pedestrians, and beyond simply detecting them. In surveillance videos, there are 
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usually several pedestrians appearing within one frame. Moreover, occlusions happen 

frequently. In order to take the advantages of the pedestrian’s shape, we count 

pedestrians based on blobs extracted from the background rather than detecting 

pedestrians directly. We extracted low-level and high-level features from each blob to 

indicate the number of pedestrians in this blob.  

In order to avoid detrimental effects brought about by the changing angle between 

camera and pedestrian, we extract “Grid Index” to describe the position relationship 

between the camera and each blob. The ratio of the height and width of blobs is also 

an important feature indicating the pedestrian counts. Low-level features such as 

density, density variance, horizontal mean, horizontal variance, vertical mean, and 

vertical variance show the statistical description of blobs with different pedestrian 

counts.  

6.4.1 Extended Gaussian mixture model  

The Gaussian Mixture Model (GMM) stores for each pixel    M separated normal 

distributions during a time adaptation period T, which is parameterised by mean   , 

variance   
  and mixing weight   : 

    )  ∑             
  ) 

                                   (6.1) 

where   is a pixel intensity value at time t, M is between 3 and 5, depending on the 

complexity of the scene, and I is an identity matrix with proper dimensions. The 

estimated mixing weights    are non-negative and add up to one. 

The Extended Gaussian Mixture Model (EGMM) using normalised mixture weights 

   to define an underlying multinomial distribution describing the probability that a 

sample pixel belongs to the i-th component of the GMM. Incoming pixels are 

weighted by the recursive update equations: 
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where   is a constant defining an exponentially decaying envelope that is used to limit 

the influence of the old data,    is an ownership notation that is set to 1 for the “close” 

component with largest    and the others are set to 0, -   is a negative weight that 

imposing a minimal amount of evidence requirement before a component can be 

allowed to exist. The “close” component is defined when the Mahalanobis distance 

from the component is, for example, less than three standard deviations: 

  
    )        )

    
                                             (6.3) 

 

If  no “close” component is found, a new Gaussian component is created with 

                                                              (6.4) 

 

where     is a large initial variance.  If the maximum number of components is 

exceeded, the component with the lowest weight will be discarded.  

A foreign object appearing in the scene would be represented by some additional 

components with low weights and high variances. After implementing EGMM on 

frames, moving objects were segmented from background. A median filter was used 

to remove noise from segmented results, we detected blobs and found upright 

rectangles to separate these blobs. As shown in Fig. 6.4, these detected rectangles 

contained pedestrians as well as other objects (such as pigeons and moving waste 

garbage bags). In order to discriminate these rectangles and calculate pedestrian 

numbers within each rectangle, we trained the classifier based on extracted rectangle 

features. 
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Fig. 6.4 Detected rectangles contain pedestrian(s) as well as other objects. 

 

 

6.4.2 Hybrid features extraction based on maximum dependency  

Nine highly relevant features were extracted from each rectangle in order to estimate 

the number of pedestrians in this rectangle. Please note that we defined rectangles 

containing no pedestrian equivalent to pedestrian count of 0. All features were 

examined on binary images obtained from foreground segmentation and noise 

removal, which was described in the last section. More specifically, these features 

were: 

Grid Index: According to our observation, rectangles that contained the same number 

of pedestrians on different frame locations had different appearances. As shown in Fig. 

6.5, both the two rectangles contain two pedestrians while they are with different sizes 

given that their distances to camera are different. Instead of using the locations of 

rectangles, we divided each frame into 10×10 grids and indicated the grids, to which 

rectangles belong: 

       |     )        )|  )                                          (6.5) 

We chose the grid indicator   when the distance between rectangle center      )and 

grid center       ) is minimized. Taking the advantage of grid indication, our method 

is robust to videos of different definitions.   
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Fig. 6.5 Both rectangles contain one pedestrian while they are of different sizes. 

 

Width and Height: Rather than using areas of rectangles as in previous methods 

(Ryan, Denman et al. 2009) (Ryan, Denman et al. 2010), we adopted both relative 

width and height as features. Since pedestrians usually walk upright, even rectangles 

of other objects have similar areas of pedestrian rectangles. Additionally, we took 

various video definitions into considerations. The relative width    and height   are 

defined as: 

  
     

          
        

      

           
                            (6.6) 

where       and        are the width and height of moving rectangle, respectively, 

while            and             are the width and height of video frame, 

respectively. 

Density: Density is used to describe the Foreground Pixels (FPs) density of each 

rectangle using: 

                                                            (6.7) 

where F is the number of FPs in the rectangle and N is the number of all pixels in the 

rectangle.  

Density Variance: Besides the FPs density information, we should note that FPs in 

rectangles with the same pedestrian numbers usually distribute with certain common 

characteristics. Hence, we utilised FP density variance as a clue to discriminate 
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rectangles with different pedestrian numbers. To obtain this feature, each rectangle is 

divided into    equal-sized sub-blocks, as shown in Fig. 6.6. Let    denote the  

 

Fig. 6.6 Each rectangle is divided into 16 equal-sized sub-blocks for Density 

Variance Calculation. 

 

foreground pixel number in sub-block i, and    is the FP density described in (7). 

Then, the density variance    is defined as: 

   
∑ |     | 

   

     
                                                                  (6.8) 

where     is the number of foreground pixels in sub-blocks, e.g.,     in our 

experiment.  

 

Horizontal Mean, Horizontal Variance, Vertical Mean, and Vertical Variance: 

Due to variances in pedestrian shape and walking posture, some characteristics of 

rectangles can be described by Horizontal FP Mean (HM), Horizontal FP Variance 

(HV), Vertical FP Mean (VM), and Vertical FP Variance (VV): 

           

   
∑ |     |     

   

        
                                                (6.9) 
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∑ |     |

      
   

         
 

In the training stage, all rectangles are annotated manually with 0, 1, 2,…, 10. With 

the above extracted features, the classifier is trained via SVM. We use libsvm library 

with radial basis function kernel (Chang and Lin 2011). 

6.5 Improved counting with motion analysis 

Our method treated each frame of video as an independent one, and estimated the 

pedestrian number based on features extracted from each moving rectangle. Although 

some tracking techniques such as the Kalman filter could smooth the rectangle 

trajectory, the splits and merges of rectangles are ignored.  By contrast, in our method, 

we improved the tracked results according to the match, split and merge analyses. 

Precisely, we first detected matches between each rectangle in two consecutive frames. 

For instance, given two rectangles A, B, two rectangles match is defined as: 

     )  
√   

    
 )  √   

    
 )

 
 

                 
     

     
<                                                 (6.10) 

where      ) is the distances between centers of A and B,   ,   ,    and    are 

width and height of rectangle A, width and height of rectangle B, respectively. 

According to our experiment, we achieved best results when bottom threshold and up 

threshold are 0.8 and 1.2, respectively. 

After matched rectangles are found, left rectangles are split or merged. To 

match    ,   in previous frame and B in current frame, we combine    and    to a 

joined region         . If    and B satisfy (10), we determine     ,   in the 

previous frame merges into B in the current frame. To match B in previous frame and 

   ,   in current frame, we combine    and    to a joined region        . If 

B and    satisfy (10), we determine    and    in current frame are split from B in 

previous frame. 

Taking advantage of rectangles tracking with split-merge analysis, the pedestrian 

counting is improved. Specifically, the pedestrian counting of current rectangles is 
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optimised by the historical records of this rectangle according to the following four 

cases: 

No match: If no matched rectangle was found in the previous frame, we only 

consider the current pedestrian counts of this rectangle. 

Direct match: If a directly matched rectangle in the previous frame was found, we 

take the current pedestrian count as the median value of the counting record,  which 

includes current counting and maximum -9 historical counts. 

Merge: If two rectangles    ,   were found in the previous frame for one rectangle 

B in the current frame, a new counts record is formed by summing corresponding 

counts in the two lists of    and   . We take current pedestrian counts as the median 

value of this new record, which include current counts and maximum -9 historical 

counts. 

Split: If one rectangle B was found in the previous frame for two rectangles   ,   in 

the current frame, the current pedestrian counts are considered as: 

   

      
   

       

    
)/2,             

      
   

       

    
)/2                 (6.11) 

Where    

  and    

 are optimised pedestrian counting,    is pedestrian counts of B, 

   
 and    

 are areas of   and   ,    
 and    

 are current pedestrian counts.  

6.6 Experiment and discussion 

6.6.1 CUDA implementation 

Our method implemented with a low-end GeForce 310M GPU on CUDA framework 

provides at least 10x speedup, which would be demonstrated in experiment section. 

The CUDA framework exposes the Single Instruction Multiple Data (SIMD) 

architecture of the GPUs by enabling the parallel operation of the program kernels on 

image pixels, divided them into multiple blocks consisted of several threads.  Threads 

in a block can cooperate while blocks in the image are independent. This 

programming model allows for a very high degree of scalability. The highest 

performance is achieved when the threads avoid divergence and perform the identical 

operation on image. The threads can access data during the execution process for 6 

different types of memory: register, local, shared, global, constant and texture 
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memory. All threads can access global, constant and texture memory while only 

threads in the same block can access a shared memory. Each thread has private local 

memory and registers. Constant and texture memory are read-only while all the others 

are read-write. The above basic knowledge guides the CUDA to implement our 

method.  The details of CUDA memory hierarchy and heterogeneous programming 

model can be referred to in (Nvidia 2012). 

6.6.2 Experimental data 

In this section, we analyse the performance of our method. Experiments were 

performed on three benchmark public surveillance videos: two videos are from PETS 

2009 (Database 2009) and the other one comes from Town Centre Database (Benfold 

and Reid 2011), and then compared with two current methods: fastHOG (Prisacariu 

and Reid 2009) and Crowd Counting using Multiple Local Features (CCMLF) (Ryan, 

Denman et al. 2009). Attributing to the open-ource code of fastHOG, we saved 

substantial time. The experimental videos are real-world pedestrian scenes with 

different backgrounds (both simple and complicated), viewpoints, and number of 

pedestrians within one frame ranging from a few individuals to over 50. Whereas in 

our experiment, the number of pedestrians ranges from 0 to 10. We should bear in 

mind that 10 was the maximum size of one group, not the total number of pedestrians 

in the frame. The total pedestrian count in a frame was the summation of the numbers 

of pedestrians within all the groups. All experiments were implemented on a Intel™ 

Core™2 Duo CPU 3.00GHz 2.00 GB memory PC with a Geforce 310M GPU card. 

Please refer to the supplementary material or via this link 

http://www.youtube.com/watch?v=wENabEdKDZo to watch a demonstration video.  

 

Fig. 6.7 Snapshots of the three experimental videos. The PETS2009 database is 

copyright University of Reading and permission is granted for free download for 

the purposes of academic and industrial research (Database 2009).  

http://www.youtube.com/watch?v=wENabEdKDZo
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6.6.3 Classifier training  

As mentioned previously, we used three videos in the experiment. Two videos came 

from PETS2009, the other one was from Town Centre Database. PETS2009 was a set 

of 768×576 pixels JPEG image sequences in outdoor condition. It had 4 subsets, each 

subset containing several sequences and each sequence contained views which ranged 

from 4 to 8. More precisely, we chose view 1 from subject 1, sequence 1 scenario and 

view 1 from subject 2, sequence 1 scenario to create two 768×576 at 20 fps videos. 

We named these two videos as PETS2009_1 and PETS2009_2 respectively, two 

frames of which are shown in Fig. 6.7 (a) and Fig. 6.7 (b). Meanwhile, Town Centre 

Database contained a video of a busy town centre street. The video was high 

definition (1920×1080 at 25fps). This video was used to test pedestrian detection and 

tracking performance in (Prisacariu and Reid 2009) (Benfold and Reid 2011). Fig. 6.7 

(c) shows a snapshot of this video.   

 

 

Fig. 6.8 Examples of binary rectangles and their colour corresponding. 

 

The lengths of the three videos (PETS2009_1, PETS2009_2 and Town Centre Video) 

were 1584 frames, 478 frames, and 7500 frames respectively. In order to collect 

training data, we implemented a rectangle detection algorithm on the first halves of 

these videos, respectively, as described in the method overview. After the classifier 

was trained, we tested our method on the second halves of these three videos. As 

described in Table 6.1, we collected 3919 rectangles, 997 rectangles, and 45614 

rectangles from 793 frames of PETS2009_1, 239 frames of PETS2009_2, and 3750 

frames of Town Centre Video respectively. After extracting 9 features from each 

binary rectangle, we manually annotated these rectangles with pedestrian numbers (0 



109 

 

to 10). With the aim to guarantee correct pedestrian counting, annotation was made 

for each binary rectangle via viewing the corresponding colour rectangle, as shown in 

Fig. 6.8. It was worth noting that all rectangles contained no pedestrians, one 

pedestrian or several pedestrians. Also referred in Fig. 6.9, rectangles with no 

pedestrians were viewed as background objects like moving flag, vehicle, or tree 

branches.  

Most detected rectangles from PETS2009_1 contained 0 to 4 pedestrians, as 

pedestrians in PETS2009_1 were usually sparse. Rectangles recognised from 

PETS2009_2 included more pedestrians, with numbers ranging from 0 to 10, as 

pedestrian groups were relatively dense in PETS2009_2. The pedestrian numbers of 

detected rectangles from Town Centre were distributed evenly as TownCentre 

contained many more frames than the previous two videos. When the annotation 

process was completed, all extracted features and pedestrian numbers were input into 

libsvm (Chang and Lin 2011) for training the classifier.  

Table 6. 1 Detected rectangles with counts annotations for training classifier. 

Video TF DR PN0 

 

PN1 

 

PN2 

 

PN3 

 

PN4 

 

PN5 

 

PN6 PN7 PN8 PN

9 

PN10 

 

PETS 

2009_1 

792 3919 409 2446 801 230 26 5 1 0 1 0 0 

PETS 

2009_2 

239 997 268 134 112 37 109 229 72 58 9 21 48 

Town 

Centre 

3750 45614 4500 24560 10549 1243 2690 1267 569 108 48 50 30 

*TF denotes Training Frames, DR denotes Detected Rectangles, PNx denotes 

pedestrian number in rectangle is x 

 

6.6.4 Comparison evaluation 

 

Fig. 6.9 Pedestrian counts by proposed method on three videos (Please refer to 

Fig. 6.9 in appendix for high-resolution figures). 
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In this section, we assessed the performance of the proposed method against fastHOG 

(Prisacariu and Reid 2009) and CCMLF (Ryan, Denman et al. 2009), via testing it on 

the second halves of the three videos. In order to demonstrate the superiorities borne 

about by rectangles tracking, we also investigate the proposed method without 

rectangles tracking. Fig. 6.9 shows some sample frames and the counting results by 

our proposed method. The number at the top-left corner of each rectangle is its 

estimated pedestrian count. The number at the top-left corner of the image is the total 

estimated pedestrian count throughout entire image. Though PETS2009_1 (Fig.6.9 (a)) 

is usually sparse, it is still difficult as pedestrians walk in different directions. While 

PETS2009_2 (Fig.6.9 (b)) shows a scenario that pedestrians walk towards the same 

direction, the challenging part in this situation is that pedestrian groups are usually 

very dense. The tricky part of Town Centre (Fig. 6.9(c)) is that other disturbing 

objects such as pigeons and a trolley are present in the image. 

Please note that CCMLF (Ryan, Denman et al. 2009) assume all detected blobs are 

pedestrians rather than to filter detected moving objects out from pedestrian blobs. 

Actually, this problem exists in a number of current pedestrian detection and counting 

methods. Background object discrimination was added into CCMLF by using the 

features and training method in CCMLF, and thus made the comparison experiments 

valid.  

Ground truth was compared to the total estimated counts of our proposed method, of 

fastHOG, and of adaptive CCMLF, tested on the second halves of the three videos. 

Fig. 6.10, Fig. 6.11 and Fig. 6.12 depict the comparisons. Pertaining to the three 

figures, the red line describes ground truth pedestrian numbers per frame throughout 

the entire video. The blue, green, and black lines represent differences between 

estimated pedestrian counts and ground truth per frame throughout the entire video 

based on our proposed method, fastHOG and CCMLF, respectively. Fig. 6.10 

illustrates the case of PET12008_1 video. The video is usually sparse in that it 

contains 1 to 10 pedestrians per frame. The proposed method (blue line) and fastHOG 

(green line) work much better than CCMLF (black line). In addition to this, our 

method is more stable than fastHOG. For example, between frame 150 and frame 700, 

fastHOG is prone to make mis-detections, which are usually caused by pedestrian 

overlay.  
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Fig. 6.10 Comparison evaluation of three methods by testing on PETS2009_1 

(Please refer to Fig.6.10 in appendix for high-resolution figures). 

 

 

Fig. 6.11 describes the case of PET12008_2 video, which usually contains pedestrian 

crowds of high density. The CCMCL (black line) is still unstable in this case. 

fastHOG (green line) usually misses pedestrians due to occlusions occurring, while 

the proposed method (blue line) works well (with exception as well, for example, 

around frame 90, when mistakes took place in the proposed method when the 

pedestrian densities of rectangles were too high). Fig. 6.12 depicts the case of 

TownCenter video, which contains a more complicated scenario than that of previous 

videos. CCMCL (black line) works poorly in this case. fastHOG (green line)  

performs well as the pedestrians usually walk sparsely but still misses pedestrians 

when occlusions happen. The proposed method works well on these tricky frames. 

However, a drawback of the proposed method should be noted in that it cannot deal 

well with stationary pedestrians. For example, around frame 1200, our method detects 

and counts the pedestrian correctly when he walked into the view of camera. But our 

method missed it after the pedestrian stopped on the centre of a street without any 

movement.  

In order to demonstrate the improvement of pedestrian counting with rectangles 

tracking, we tested the proposed method with and without tracking on PETS2009_1 

video. Fig. 6.13 shows the performances. The red line describes ground truth 

pedestrian numbers per frame throughout the entire video while the blue and green 
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lines represent the estimated pedestrian numbers by the proposed method with and 

without tracking, respectively. As shown, through the match, split and merge analyses, 

several mistakes were corrected by historical counts records because each pedestrian 

entering the video frame should walk out and disappear in that frame.  

 

Fig. 6.11 Comparison evaluation of three methods by testing on PETS2009_2 

(Please refer to Fig.6.11 in appendix for high-resolution figures). 

 

 

 

Fig. 6.12 Comparison evaluation of three methods by testing on TownCenter 

(Please refer to Fig.6.12  in appendix for high-resolution figures). 
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Fig. 6.13 Evaluation of counting improvement by adaptive tracking (Please refer 

to Fig.6.13 in appendix for high-resolution figures). 

 

6.6.5 Robustness evaluation 

Ideally, a promising method should guarantee robustness characterised by both low 

false alarm and mis-detection. In attempt to examine the robustness of our method, we 

compared the proposed method with fastHOG and CCMLF on the first 1000 frames 

of the TownCenter video. Table 6.2 shows the false alarm and mis-detection 

throughout the whole 1000 frames by these three methods. We should bear in mind 

that different false alarms and mis-detections for fastHOG and the other two methods 

were defined, as fastHOG was individual based while the other two were group based. 

For fastHOG: 

            
                          

                          
, 

                
                         

                          
                        (6.12) 

For proposed method and CCMLF: 

            
                         

                                       
, 

               
                        

                                       
                  (6.13) 

As shown in Table 2, our proposed method and fastHoG were similar in terms of false 

alarms (8.0% and 7.2%), which were much lower than that of CCMLF (16.3%). It 

indicated that the proposed method or fastHOG was more capable of discriminating 

pedestrians from other objects, because CCMLF did not discriminate other objects 
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from intended objects(pedestrians)after segmenting foreground On the other hand, 

both the proposed method and CCMLF had a lower mis-detection rate (2.7% and 

3.8%) as they utilised similar blob detection methods. In contrast, fastHOG failed to 

detect pedestrians (17.5%) when occlusion happened. 

 

Table 6. 2 Robustness evaluation regarding false alarms and mis-detection. 

Rectangles Pedestrian Method False alarm Miss detection 

11033 15121 Proposed  8.0%(1212/15121) 2.7%(401/15121) 

11087 15890 CCMLF 16.3%(2590/15890) 3.8%(605/15890) 

N/A 14629 fastHOG 7.2%(1056/14629) 17.5%(2560/14629) 

 

6.6.6 Computational cost 

In this section, we examined the running time of the proposed method. Results can be 

seen in Table 6.3. Processing speed was given in frames per second (fps). Processing 

speed was faster for our method than that of the other two methods. For all three 

methods, processing speed on TownCenter was faster than those on the other two 

videos using the same method, as TownCenter had a higher definition. Though both 

our proposed method and fastHOG were implemented on CUDA framework; 

fastHOG was slower as its siding-window technique required a substantially higher 

computational load. The processing speeds of our method on the three videos were 

40fps, 42fps and 35fps, which were considerably faster than video playing speed 

(25fps). Compared to other methods, our method can work satisfactorily in real-time 

while other methods cannot be applied in real-time, since their processing speeds on 

three videos were slower than videos’ playing speed. 

Table 6. 3 Computation cost evaluation by testing on three videos. 

Video Proposed fastHOG CCMLF 

PETS2009_1(768*576 at 20fps) 40 fps 11fps 14fps 

PETS2009_2(768*576 at 20fps) 42fps 7fps 15fps 

TownCentre(1920*1080 at 25fps) 35fps 3fps 1fps 

 

6.6.7 Speedup demonstration 
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Fig. 6.14 Evaluation of Speedup by CUDA implementation. 

 

Finally, we attempted to interpret the superiorities generated by CUDA 

implementation. The Town Center video was employed to test the speedup of the 

CUDA implementation over various frame resolutions. We down-sampled frames of 

TownCenter to get 10 videos in different resolutions: 320×480, 400×600, 480×720, 

640×960, 720×1080, 800×1200, 960×1440, 1024×1536, 1280×1920, and 1920×1080. 

At each resolution level, we ran both methods with and without CUDA 

implementation, measured the processing speed and speedup correspondingly. As 

shown in Fig. 6.14, CPU implementation works well on extremely low-resolution 

videos (320×240 and 640×480) while accompanied by real-time processing speed 

(25fps). However, the processing speed of CPU implementation declined to 5fps 

when the video resolution increased to 1920×1080. On the other side, for CUDA 

implementation, the processing speed was greater than 25fps even if the highest-

resolution video (1920×1080) was applied. The red line shows our CUDA 

implementation has at least a 10-times speed increase over traditional the CPU 

method.  

6.7 Conclusion 

Utilising the feature selection strategy, we have presented a novel method that 

estimates the numbers of pedestrians in surveillance videos. In order to best encode 

the characteristics of pedestrians in the moving blobs, we choose 9 maximum-

dependent features. We first extract moving objects from the background per frame. 

Particularly, based on extracted hybrid features from each moving object, each object 

is classified into 0 to 10 pedestrians. Meanwhile, a traditional tracking method 

optimised by a novel analysis is proposed to improve the estimated pedestrian counts. 
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The total pedestrian number per frame is the summation of pedestrian counts of 

detected rectangles. In addition, CUDA implementation of our method provides at 

least a 10-times speed increase over traditional CPU methods. These aforementioned 

improvements enable our method to work well in real-time applications such as 

intelligent traffic systems and public place surveillance. The effectiveness of the 

proposed method using our feature selection methodology is demonstrated by 

comparison with other two methods on three benchmark surveillance videos.  

Although we have demonstrated the stability and effectiveness of the pedestrian 

counting method in this chapter, our method cannot avoid certain limitations. First, 

our method was robust to limited camera angle changing (approximately 10 degrees) 

and variations from changing the camera-to-ground distance (approximately 1 metre). 

However, when the cameras are installed differently, we will need to collect new 

training data and train a new classifier then. Second, the method presented here would 

be more effective for scenes such as shopping malls, college campuses, and streets, 

where pedestrians walk as individuals or in social groups. Last, the proposed method 

was not intended for use in an environment that has immense crowds of people, such 

as mob scenes and political rallies, in which people cannot be segmented into 

individuals or groups. 
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Chapter 7  Feature Selection for Intelligent Vehicle  

The content in this chapter has been published in (Peng, Xu et al. 2012) (Peng, Jin et 

al. 2012) (Peng, Xu et al. 2011).  

 

The paper “3D Pose Estimation of Front Vehicle Towards a Better Driver Assistance 

System” was awarded Best Paper in 2012 IEEE International Conference on 

Multimedia and Expo Workshops (ICMEW). 

 

7.1 Background  

In last two chapters, we validate the effectiveness of our feature selection strategy in 

the two cognitive systems between surveillance cameras and the two main road-

users—vehicles and pedestrians. In this chapter, we implement feature selection in a 

more complex cognitive system-intelligent vehicle. In this cognitive system, the 

camera is not fixed and background changes quickly. Moreover, this system strictly 

requires real-time processing.  

Vehicle crashes occur every minute around the world. This makes vehicle collisions 

the leading cause of severe injuries worldwide, according to the report of the World 

Health Organization. With the aim of reducing the number of injuries and accident 

severity, crash-prevention systems is becoming an area of active research among 

automotive manufacturers, suppliers and universities. An on-board driver assistance 

system aiming to provide the driver with a 3D position of front vehicles is very 

attractive. Besides preventing collisions, the accurate position of the front vehicle can 

help a driver to make the right decisions on the road. This task includes two steps: 

front vehicle detection and 3D position calculation.  

Vision-based vehicle detection has received considerable attention over the last 20 

years. As shown in Fig. 7.1, these applications are grouped into two general 

categories, depending on the installation location of the camera: one is a fixed camera 

which is installed roadside; the other one is a camera mounted on a vehicle. For 

vehicle detection with a roadside camera, many vehicle detectors utilise background 
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Fig. 7.1 Current vehicle detection methods.  

 

subtraction methods (Vargas, Milla et al. 2010). Wu et al. (Wu and Juang 2012) 

proposed a grey-level differential value method to dynamically segment moving 

objects from the background. This method rests on the assumptions that road surfaces 

are grey, lane marks are yellow or white and that the remaining colours are to be 

regarded as moving objects on the road. Vargas et al. (Vargas, Milla et al. 2010) 

integrated a background subtraction algorithm with a sigma-delta filter, which has 

high computational efficiency. The proposed method attempts to achieve a 

background updating model at the pixel level by introducing a confidence 

measurement for each pixel. 
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Fig. 7.2 Comparison between background subtraction techniques with a road-

side camera and an on-board camera. 

 

For vehicle detection with an onboard camera, however, background subtraction 

cannot be easily used because prior knowledge about the background is not available. 

For example, we achieve good results - as shown in Fig. 7.2 (a) - with a road-side 

camera using the background subtraction algorithm in (Vargas, Milla et al. 2010). 

However, this result cannot be obtained when we use the same algorithm with an 

onboard camera - as shown in Fig. 7.2 (b) - because the background is not static. The 

processing speed is extremely critical in onboard vehicle detection systems, since the 

prompt feedback from such a system could save time for a driver’s reaction. Various 

approaches with low computational costs have been proposed in the literature, which 

can be classified into one of the following categories: appearance-based analysis 

(Betke, Haritaoglu et al. 2000) (Bucher, Curio et al. 2003) (Chu, Ji et al. 2004) 

(Cucchiara, Piccardi et al. 2000) (Du and Papanikolopoulos 1997) (Hoffman, Dang et 

al. 2004) (O'Malley, Jones et al. 2010) (Tai, Tseng et al. 2004) (Tzomakas and Seelen 

1998) (Wei, XueZhi et al. 2007) and low-level-based features (Arai, Inoue et al. 2010) 

(Wang and Lien 2008) (Jazayeri, Hongyuan et al. 2011). Tai et al. (Tai, Tseng et al. 



120 

 

2004) used an active contour method with a Kalman filter to detect and track vehicles. 

As demonstrated in their research, the vehicles could be easily tracked with a low 

computation loading. However, the contour initialisation posed a critical risk. Chu et 

al. (Chu, Ji et al. 2004), Du et al. (Du and Papanikolopoulos 1997) and Hofmann et al. 

(Hoffman, Dang et al. 2004) reported that vehicles rear or frontal views are generally 

symmetrical in both horizontal and vertical directions. However, an important issue 

arises when computing symmetry from image intensity in that symmetry is quite 

prone to false detection, such as symmetrical background objects or partly occluded 

vehicles. It was observed that the rear or frontal views of vehicles usually contain 

many horizontal and vertical structures, such as rear windows and bumper; thus, 

Betke et al. (Betke, Haritaoglu et al. 2000) proposed a coarse-to-fine method to detect 

distant cars via searching for rectangular objects. A refined search was activated only 

for small regions on the image, after a whole image search. Within a predefined 

maximum distance from the detected road lanes, Bucher et al. (Bucher, Curio et al. 

2003) found vehicle candidates with edge features by scanning the image from the 

bottom up to a certain vertical position, line-by-line. Although fast and positive results 

were made and the method appeared very attractive, its performance and robustness 

strictly depended on well-tuned parameters, such as the thresholds for detecting edges 

and choosing the most important vertical and horizontal edges. In addition, the use of 

vehicle lights as another clue for vehicle detection was studied. Malley et al. 

(O'Malley, Jones et al. 2010) detected and tracked vehicles by segmenting rear-facing 

lamps based on a red-colour threshold. Meanwhile, Cucchiara et al. (Cucchiara, 

Piccardi et al. 2000)  employed a morphological analysis to detect vehicle light pairs 

in a narrow inspection area. This kind of method was very sensitive to illumination, 

where promising results could only be obtained at night. Shadow information as a 

sign pattern for vehicle detection was investigated in (Tzomakas and Seelen 1998) 

(Wei, XueZhi et al. 2007). Liu et al. (Wei, XueZhi et al. 2007) distinguished vehicle 

candidates using the shadow underneath a vehicle. Tzomaks et al. (Tzomakas and 

Seelen 1998) analysed the grey level around the detected lanes to segment shadow 

and then found a vehicle. However, there is no systematic way to choose the 

appropriate threshold values for shadow segmentation. 

Texture patterns have also been used for vehicle detection. These texture patterns 

were usually presented by low-level features, such as feature points (Jazayeri, 
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Hongyuan et al. 2011), eigenvalues (Wang and Lien 2008) and Haar-like features 

(Negri, Clady et al. 2008), etc., rather than the structure features described above. 

Arai et al. (Arai, Inoue et al. 2010) proposed a vehicle detection system based on the 

shift of a feature plane, which was constituted by feature points on the front surface of 

the vehicle. They found the feature plane of the vehicle’s front surface shifts in 

accordance with an affine transform. Jazayeriet et al. (Jazayeri, Hongyuan et al. 2011) 

extracted low-level features, such as corners, intensity peaks and horizontal line 

segments from images. These features were profiled to the temporal space. To 

identify tracked features, such as a car or a background, they estimated probability 

distributions for the motion properties of cars and the background. The Hidden 

Markov Model (HMM) was used to separate vehicles from the background and track 

them probabilistically. At the same time, a statistical model was used in (Wang and 

Lien 2008), performing vehicle detection by Principal Component Analysis (PCA). 

Negri et al. (Negri, Clady et al. 2008) compared the performances of different vehicle 

detectors. In their study, these detectors were trained from Haar-like features, a 

histogram of oriented gradient features and a fusion of the two feature sets, 

respectively. Subsequently, the best performance was achieved by the feature fusion. 

The low-level feature-based methods usually consist of feature extraction and 

classifier training. It is worth mentioning that in view of the various appearances of 

vehicles it is normally extremely difficult to construct explicit models. 

Another interesting method was raised by Arrospide et al. in (Arrospide, Salgado et al. 

2010). They found a vehicle via ground plane detection. The proposed method is 

based on the reliable estimation of the homography between ground planes in 

successive images. The homography calculation is grounded on a linear estimation 

framework, which predicates the ground plane transformation matrix while it is 

dynamically updated with new measurements. Disappointingly, the results showed the 

speed of the method to be only around 10fps, with an image resolution of 360×288, as 

implemented on a 2GHz 2GB Memory PC. 

To the best of knowledge - with notable exceptions like (Bensrhair, Bertozzi et al. 

2002) (Broggi, Caraffi et al. 2005) (SamYong, Se-Young et al. 2005) (Zielke, 

Brauchkmann et al. 1992) most of the previous vehicle detection works have been 2D. 

Even in (Sun, Miller et al. 2002), a proposed pre-crash system was based on vehicle 

rear detection in a 2D rather than a 3D space. With an onboard camera, Zielke et al. 



122 

 

(Zielke, Brauchkmann et al. 1992) measured the distance from front vehicles under a 

Time-to-Collision (TTC) model. This TTC model was represented by the distance 

between two images points on the rear surface of the front vehicle and the rate of the 

changing rate for this distance. However, this proposed method strictly rested on the 

assumption that the vehicle with the camera is moving up to the front vehicle rear 

vertically, which cannot be guaranteed in reality. Besides this, the stable detection and 

tracking of the two points in the marker-less scene was very difficult. Broggi et al. 

(Broggi, Caraffi et al. 2005) and Bensrhair et al. (Bensrhair, Bertozzi et al. 2002) 

detected and localized a front vehicle using stereo vision. With known stereo rig 

parameters, a 3D map of the viewed scene can be constructed via the differences in 

the corresponding pixels between left and right images. Though this method can 

obtain accurate measurements, it is extremely time-consuming. Kim et al. (SamYong, 

Se-Young et al. 2005) used a sonar sensor for vehicle detection and distance 

estimation. Although these non-visual sensors can measure distance directly, without 

requiring powerful computing resources, they have several drawbacks, such as a high 

cost, a low spatial resolution and a slow scanning speed. Furthermore, visual 

information is very important in a number of related applications, such as lane 

detection and traffic sign recognition. 

In this chapter, our proposed approach recognises and tracks vehicle rears quickly 

based on license plate localisation. Then, a 3D pose is estimated with respect to the 

extracted vehicle rear. This has several advantages: 1, a license plate (LP) is smaller 

and much more standardised than a vehicle rear, making LP localisation quicker and 

more robust than directly detecting a vehicle; 2, because only the region around the 

LP rather than the whole vehicle is required for 3D pose estimation, we are able to 

achieve real-time performance; 3, pose measurement is not affected, even when the 

extracted regions of a vehicle’s rear in successive frames are not exactly the same, 

since vehicle’s rears are considered as planar.   

The remainder of this chapter is structured as follows: we begin by reviewing the 

related work about 3D pose estimation from a planar object in Section 7.2. In Section 

7.3 we present an overview of our own system. Subsequently, Section 7.4 overviews 

the feature selection scheme guides the map initialisation and maintenance. Section 

7.5 interprets the process of map initialisation using extracted localised features. Next, 

vehicle rear detection, tracking and pose estimation are described in Section 7.5. In 



123 

 

Section 7.6 we present map updates and maintenance in detail. The experimental 

results are demonstrated in Section 7.7. Finally, we conclude in Section 7.8. 

7.2 Related work about 3D pose estimation from a planar target 

There are several approaches for pose estimation, where the 6 degrees of freedom of a 

camera’s pose are calculated from correspondences between images and the real 

scene structure. Most of them work with the theory that the pose of a calibrated 

camera can be uniquely estimated by no less than four coplanar and no collinear 

points. Depending on how correspondences between images and the real world should 

be established, these methods could be divided into two categories: prior knowledge-

based methods and self-initialisation-based methods. 

With the prior model, the registration between an image and the real world can be 

performed directly. The camera pose can then be estimated from these corresponding 

points (Eade and Drummond 2009) (Kawano, Ban et al. 2003) (Mondragón, Campoy 

et al. 2010). Drummond et al. (Eade and Drummond 2009) found camera poses that 

correctly re-project some fixed features of a prior 3D model into the 2D image. These 

features can be edges, line segments or points. Through the least-squares 

minimisation of an error function, the best pose was found. Actually, a comprehensive 

prior model is not readily available. Some researchers have established a relationship 

between images and the real world using fiducial markers. For instances, Kawano et 

al. (Kawano, Ban et al. 2003) discussed a number of planar markers for Augmented 

Reality (AR). The salient markers with known pose information in the real world 

were easily detected in the images. Meanwhile, Mondragón et al. (Mondragón, 

Campoy et al. 2010) utilised 3D pose estimation techniques in Unmanned Aerial 

Vehicle (UAV) control. Specifically, their proposed method asked a UAV driver to 

select four points on the image that correspond to four corners on the helipad. 

Normally, 3D pose estimation implements a previously unknown scene without any 

known models. This problem was solved in (Klein and Murray 2007) (Mouragnon, 

Lhuillier et al. 2006) by building an initial map from a five-point stereo (Stewénius, 

Engels et al. 2006). Mouragon et al. (Mouragnon, Lhuillier et al. 2006) tracked a 

camera using local bundle adjustment over the most recent camera poses and obtained 

accuracy over a long distance. Klein et al. (Klein and Murray 2007) established a 
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small AR workspace where the user will spend most of their time. As such, they built 

a long-time map in which features were constantly re-visited. This is similar to our 

own case, in which we focus on the extracted vehicle rear region. User cooperation is 

required in (Klein and Murray 2007) for map initialisation; however, it would be 

unsafe to ask a driver to manipulate this. In our method, the initial map is constructed 

with feature points tracked on two extracted vehicle rear regions at the beginning.  

7.3 Method overview 

As shown in Fig. 7.3, our system consists of two threads: tracking and mapping. 

Although these two threads are intimately linked, most of the time they perform in 

parallel in order to save processing time. For a mapping thread, as shown in Fig.7.3, 

and given the assumption that vehicle rears are detected and tracked on frames, a map 

is initialised from feature point correspondences found in the first two keyframes. The 

map consists of a collection of point features with their 3D information. Each map 

point has a coordinate in the world coordinate system, references to the source 

keyframe and to the patch source pixels. The map is updated by keyframes, rather 

than frame by frame. These map points can be considered as a “bridge”, which relate 

image points to the real world. 

 

For a tracking thread, and with the assumption that the map has been already 

initialised, video is captured by the camera mounted on the front of the vehicle. 

Because we only need information of the front vehicle rather than the whole image, 

we only process a Region of Interest (ROI), as shown in Fig.7.4. The size of the ROI 

in our experiment is 640×480 pixels. A rejection cascade of an AdaBoost classifier 

with line segment features and Haar-like features (Peng, Xu et al. 2011) is utilised in 

order to find a set of LP candidates quickly. A best detection is obtained, followed by 

non-maximal suppression. Based on a localised LP, a vehicle rear is extracted. FAST 

(Features from Accelerated Segment Test) corners (Rosten and Drummond 2006) are 

then detected on the extracted vehicle rear. After finding correspondences between the 

detected features and map points, the relative pose of the camera to the map is 

calculated.  
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Fig. 7.3 Method overview of our 3D position estimation system. 

 

 

Fig. 7.4 ROI on the whole frame. 
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7.4 Feature selection scheme for building reference map 

The map is the most core part in this system. It is the “bridge” between recorded 

images and real world. Though we have demonstrated the combination of LSF and 

Haar-like in localising license plate in Chapter 5, these features are not suitable for the 

map initialisation and map maintenance in this system. We need features that can be 

processed extremely fast and represent the vehicle rear in sufficient detail. To achieve 

maximum dependency, FAST corner is utilised by us. According to the scheme of 

minimum redundancy, we use bundle adjustment to acquire the optimal set of features.  

7.5 Map initialisation with selected features based on maximum 

dependency 

As indicated in (Mouragnon, Lhuillier et al. 2006), the motion between two 

consecutive frames must be large enough to compute the epipolar geometry. For map 

initialisation, we select two frames at the beginning, relatively far from each other but 

with enough matched points. The first extracted vehicle rear is selected as a keyframe 

K. In the next N detected vehicle rears, we choose the second keyframe that is furthest 

from K and with the most matched interest points with K. In our experiments, we 

choose the shortest distance, which is 20 pixels, and the least number of matched 

points, which is 100. 

 

Fig. 7.5 Map initialisation. 
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As shown in Fig. 7.5, after obtaining the first two keyframes, map initialisation is 

done with a five-point algorithm (Arrospide, Salgado et al. 2010) and RANSAC 

(Hartley and Zisserman 2003). First, the essential matrix   between the two 

keyframes is calculated from a sample of 5 point correspondences: 

{
  

    
            

      
 

 
         )   

                                       (7.1) 

Where   
 

 
and   

 

 
are the 5 points projections on the two keyframes, respectively. At 

most, 10 solutions for E could be obtained from (1). Each E produces a solution for 

the camera’s pose. We first discard the poses for which at least one of the 5 points is 

not reconstructed in front of the camera. Next, the remaining solutions for the camera 

pose are filtered with a RANSAC approach: a sample set of five points are selected to 

hypothesise a number of cameras’ poses while the remaining matched points are 

tested for consensus. The best camera pose is chosen by computing the re-projection 

error over all the possible camera poses for all of the remaining matched points and 

keeping that with the highest number of matches. A map coordinate is constructed in 

such a way that the X axis and the Y axis are on the vehicle rear plane, while the Z 

axis is perpendicular to the vehicle rear plane. 

 

Fig. 7.6 Constructed map and keyframes. 
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As shown in Fig. 7.6, each map point refers to a single source keyframe, where the 

map point first takes place. For example, the map points generated in the procedure of 

map initialisation refer to the first keyframe. The relative 3D pose between the map 

point and its source keyframe are also recorded. Furthermore, each map point refers to 

its absolute 2D location on the source keyframe. FAST corners, as image features, are 

detected in our method as 8×8 pixel squares on greyscale frames. The centres of these 

pixel patches are recorded as the absolute 2D locations. Finally, because the sizes of 

the extracted vehicle rears change frame by frame, the relative 2D location of the map 

point on the source keyframe is also recorded , (
 

  
 

 

  
), where     ), 

 
is an absolute 

2D location of the map point on the source vehicle rear frame and       ), 
 
is width 

and height of the extracted vehicle rear. 

7.6 Vehicle rear detection, tracking and 3D pose estimation 

This section describes the procedure for vehicle rear detection, tracking and 3D pose 

estimation. In order to allow the reader to follow the idea of our method more easily, 

we present a procedure for map initialisation initially in the last section – which 

actually works in parallel with steps in this section. Therefore, the contents in this 

section build on the assumption that a map of 3D points has already been constructed.  

7.6.1 Vehicle rear detection 

We utilised the combination of line segment features and Haar-like features to detect 

license plate fast, which has been introduced in Chapter 4. Since we consider the 

vehicle rear as a plane, only a part of the vehicle rear is required for 3D pose 

estimation. We extract a vehicle rear as        and        where    and 

   are the width and the height of the vehicle rear and   and   are the width and the 

height of the localised LP, respectively.   

7.6.2 Update search region for the license plate  

The region prediction of the LP in the next frame is important. We use an alpha-beta 

filter to predict the possible region for the LP. It resembles a Kalman filter but is less 

complex and has less parameters to tune, having only alpha and beta values. The 

alpha controls the response to a new pose input while the beta controls how 



129 

 

responsive the filter is to a new velocity input. The alpha and beta gains range from [0, 

1]. The alpha-beta filter update is as follows: 

{
       ̂   

 ̂   ̂       
                                                      (7.2) 

where  ̂  is the current smoothed out pose estimation,  ̂    is the previous estimation, 

   
is the pose input,     is the residual and   is the gain. 

7.6.3 Establishment of the correspondence between map points and frame points 

For camera pose estimation, we need to find interest points on the current frame and 

match them up with map points. As described in the section on map initialisation, 

after transferring the extracted vehicle rear to greyscale, we run the FAST corner 

detector on it. Each FAST feature vector describes an 8×8 image patch. To match the 

map points with the detected points on the current frame, we use a k-means tree. The 

match is performed in a binary tree by comparing which centroid is closer to the 

query and going down the tree. The final leaf node will contain a handful of features 

that have to be searched linearly. Some matches will not be one to one 

correspondences when more than one FAST feature points to the same map point. To 

resolve this conflict, the FAST feature with the highest matching score is kept. To 

promote match accuracy, we perform a fix-range image search on the current frame. 

For every map point, we search on the current vehicle rear as: 

{
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                            (7.3) 

where  
 

  
 

 

  
) is described in the section of map initialisation as the relative location 

of the map point on the source keyframe and   
 

 
and   

 

 
are the width and height of 

the current vehicle rear, respectively. 

7.6.4 The camera project model and pose estimation 

To estimate camera pose, we should understand that the camera model points in the 

world coordinate are projected onto an image frame after being projected onto a 

camera-centred coordinate. The following equation describes the projection onto the 

camera-centred coordinate: 
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{

          

        

  [        ]   [     ] 

                                (7.4) 

where     is a point in a world coordinate,     is a transformed point in a camera-

centred coordinate,     
is a 3×3 transform matrix that contains a translation   and a 

rotation  . 

To transfer the point     
on a camera-centred coordinate to a point    

image, the 

camera’s intrinsic parameters are required. We obtain these parameters by camera 

calibration. A calibrated camera projection model is as follows: 
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where (     ) is a camera focal length, (     ) is a principal point,   is a distortion 

parameter, (   ) is a point     on an image and (     ) is a point     in a world 

coordinate. 

For 3D pose estimation, we need to find values for   and   that minimise a re-

projection error function: 

     )  ∑ ‖   
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                                     (7.6) 

where n is the number of matched points on the current frame. We use the algorithm 

in (Schweighofer and Pinz 2006) to get a unique solution from the above equation. 

7.7 Map update and maintenance  

The initial map contains only two keyframes and a set of interest points. As the 

relative pose between a front vehicle and a camera changes accordingly, new 

keyframes and map features are added into the system, to let the map grow. When no 

new keyframes or features are added, we optimise the map using a bundle adjustment.  
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7.7.1 Map update 

In section 5.3, we estimated the camera pose using the correspondence between map 

points and features on the current frame. After matching features on the current frame 

with map points, some features on the current frame may be leftover. When the 

tracking quality is good and the remaining non-near features are greater than 20, we 

add the current vehicle rear image as a new keyframe and each left feature is a 

candidate to become a new map point. We define the tracking quality as being good 

when more than 40 features are detected on the current vehicle’s rear. At the same 

time, we define the remaining non-near features as those not in 16×16 patches around 

the centres of the successful matched points.  

New map points require 3D information. This is not available from a single keyframe 

and so triangulation with another view is required. The closest keyframe already 

existing in the map is selected as the second view. The pixel patches around the FAST 

corners    
that lie along the epipolar line in the second view are compared with the 

candidate map points    using the zero-mean sum of squared differences, as follows: 

∑       
       

 )      )                                  (7.7) 

The feature on the second keyframe with the lowest sum of squared difference is 

selected for the candidate map point. 

7.7.2 Map maintenance based on minimum redundancy 

The map contains several keyframes associated with a set of map points. Using 

bundle adjustment, we optimise the map by simultaneously refining camera poses and 

map points through adjusting the associated respects of the 3D structure and the 

viewing parameters at the same time. In our system, bundle adjustment boils down to 

minimising the re-projection error in equation (7.6), with respect to the camera poses 

      )
 
and map points    . 

 
The operation is as follows: 

        
∑ ‖   
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                                        (7.8) 

Where N is the number of feature points in the map. The minimisation is achieved 

using the Levenberg-Marquardt algorithm (Moré 1978), which implements an 
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effective damping strategy that lends it the ability to converge quickly from a wide 

range of initial guesses.  

7.8 Experiment 

In order to demonstrate the performance of the system described above, we evaluated 

our system with respect to five aspects: LP localisation, feature detection and 

mapping, real-time 3D pose estimation, map optimisation and lost tracking analysis. 

The performance of LP localisation has been validated in Chapter 5. So we don’t 

repeat the experiment in this Chapter. We also discuss the degree of compliance with 

each stage of the proposed method as well as the limitations of the method. The 

experiments were implemented with a desktop PC with Intel™ Core™ 2 Duo CPU, 

E8400 3.00GHz, RAM 2GB. The videos were recorded by a camera, which was 

mounted on the front of a car, as shown in Fig. 7.7. We used a HD Motorsports 

HERO camera in the experiment. The recorded video is made with a high-resolution 

of 1920×1080 pixels, 30FPRS 

 

Fig. 7.7 The camera mounted on the front of the car. 

 

7.8.1 Camera calibration 

As explained above, we need camera parameters in order to estimate the 3D pose of 

vehicle rear. These camera parameters include focal length, principal point and lens 

distortion. To obtain these parameters, we calibrated our camera with a chessboard, 

the corners of which are very easy to find and the geometry of which is very simple. 

We recorded a video containing different views of a chessboard. After 9×6 
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chessboard corners were found on the frames, the parameters of our camera were 

calculated as: 

  [
               

               
   

]

   [                                                      ]
           (7.9) 

where   is an intrinsic matrix representing the focal length and the principal point and 

  
 is the matrix representing lens distortion. The camera parameters are metric.  

7.8.2 Feature detection and mapping performance 

 

Fig. 7.8 Constructed map and keyframes. 

 

In our method, vehicle rear tracking and mapping are very important for 3D pose 

estimation. In order to find sufficient and accurate correspondences between the 

detected features and the map points, excellent feature detection and mapping are a 

prerequisite. We assessed the performance of the feature detection and mapping in 

terms of detected features per frame and map growth. For its evaluation, our system 

was implemented with a video clip of 1093 frames, which recorded a car mounted 
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with the camera followed by another car on the road. The front car moved at various 

velocities and turned in numerous directions. Moreover, the distance between the two 

 

Fig. 7.9 Feature detection and mapping performance. 

 

cars varied throughout. Fig. 7.8 illustrates the map and keyframes generated during 

tracking. Fig. 7.8 (a) and Fig. 7.8 (b) show the maps at two different times with the 

point features and keyframes drawn. There are 5 keyframes and 202 map points 

within the map in Fig. 7.8 (a) and 15 keyframes and 235 map points within the map in 

Fig. 7.8 (b). Fig. 7.8 (c) shows some corresponding vehicle rears when the keyframes 

were found. Fig. 7.9 describes the evolution of the tracked features and the map size 

with the frame number. Moreover, we plot the number of keyframes. During the 

experiment, the map initialisation was finalised in the first 15 frames. Concurrently, 

the map size and the amount of keyframes were increased with the frame numbers. 

For example, as the green line shows, the number of map points increased from 158 to 

225. The red line represents the number of keyframes, which rose from 2 to 24. 

The blue line shows the number of detected feature points on each frame. As 

explained above, at least 4 correspondences between the detected features and map 

points are needed. We can see from Fig.7.9 that there is no detected feature from the 

1
st
 frame to the 15

th
 frame, because the initialised map is not yet implemented. After 
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the map was constructed via 158 features, only 83 out of 1078 frames had less than 10 

detected features and 46 out of 1078 frames had less than 4 detected features. 

However, when two cars were approaching one another, more features were detected 

because the vehicle rear became clearer. When the front car was distant or turning, 

fewer features could be obtained. Besides this, we can see the performance of the 

bundle adjustment from Fig. 7.9. When no new keyframes are found, the size of map 

might drop. This is because some bad map points were discarded when the map was 

optimised by a bundle adjustment. 

7.8.3 3D pose estimation and real-time evaluation 

The map in our method is constructed with the feature points found on the vehicle 

rear. The relative camera poses towards the vehicle rear are the coordinates of the 

camera in terms of the map coordinates. As shown in Fig. 7.10, the origin of the map 

coordinate is the centre of the extracted vehicle rear. The map coordinate is defined in 

 

Fig. 7.10 3D pose estimation of the camera in a map coordinate frame. 
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Fig. 7.11 3D model added into the frame based on the estimated pose. 

 

such a way that the X axis and the Y axis are on vehicle rear plane while the Z axis is 

perpendicular to the vehicle rear plane. Therefore, the measured X and Y values 

describe the offset of the camera from the origin of the map, namely the centre of the 

vehicle rear, and the measured Z value is the vertical distance between the camera and 

the map, namely the vehicle rear. Using the same video clip as that used in section 7.3, 

the X and Y coordinates of the camera are shown frame-by-frame in Fig. 7.10(a), 

while the updating distance between the camera and the map are shown in Fig. 7.10 

(b). From Fig. 7.10 (b), we can see the track of these two cars: the two cars were close 

to each other at the beginning and moved away until the distance reached 18.5 m, and 

then that the two cars moved closer again and finally stopped when the distance 

between them was 3.5 m. To demonstrate the performance of our method, we used 

AR techniques that are strictly dependent on accurate 3D pose estimation in real-time. 

We used the same 3D model as that in (Klein and Murray 2007): 3D eyeball models 

are placed on the origin of the map. As shown in Fig. 7.11, the changing size of the 

eyeball models indicates the updating distance between the camera and the map. The 

changing direction of the eyeball models represents the varying offset between the 

camera and the origin of the map. We can see that within the entire 1093 frames the 

3D models were added on to the accurate position. 

As to the red line in Fig. 7.12, the average processing time for each frame was 38.707 

ms. In particular, the time includes the license plate detection, the features detection, 

the 3D pose estimation and the map optimisation for each frame. From frame 1 to 15, 

it took round 25 ms for each frame for license plate detection. The map was 

constructed during frames 15 and 16, where the processing time jumped to above 90 

ms per frame. After the map was constructed, the time for license plate detection, 3D 
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pose estimation and map optimisation for each frame did not vary substantially. We 

can observe that the figure shape of the processing time was similar to that of the 

feature detection in Fig. 7.9, where it can be seen that the feature detection primarily 

accounted for the variation in the processing time. 

A demo video can be watched via http://www.youtube.com/watch?v=m5z5TBsTKwI. 

 

Fig. 7.12 Real-time evaluation. 

 

7.8.4 Evaluation of the map optimisation 

As explained above, the map is extremely important for accurate pose estimation. It 

would be highly risky to insert incorrect information into a map as it may expand 

when new keyframes are found. In order to demonstrate the superiorities flowing 

from our map optimisation method, we tested the proposed method both with and 

without bundle adjustment optimisation on the aforementioned video. As shown in 

Fig. 7.13, the red line and the green line denote the keyframe size and the map size 

with map optimisation and frames, respectively. Both of the lines were described in 

section 7.3: the map size increased when the new keyframes were discovered. 

Additionally, the map size might decrease when no new keyframe was yielded 

because some of the outliers were filtered out by bundle adjustment optimisation from 

the set of map points, as the examples show around frames 900 to 1093. On the other 

hand, the back line represents the evolving map size and the proposed method without 

map optimisation. As can be seen, the map size increased from 158 to 421 map points 

steadily, along with added keyframes. Furthermore, the black line remained flat when 

no additional keyframe was found. In this case, errors were prone to occur in pose 

http://www.youtube.com/watch?v=m5z5TBsTKwI
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estimation. In order to put this point into perspective, we still demonstrated the 

estimated pose by adding the AR model into the video. Fig. 7.14 gives an example of 

wrong pose estimation by the proposed method without map optimisation: the AR 

model added in the wrong place, which should have been the front vehicle rear.  

 

Fig. 7.13 Evaluation of the map optimisation. 

 

 

Fig. 7.14 An example of wrong pose estimation by the proposed method without 

map optimisation. 

 

 



139 

 

7.8.5 Discussion on lost tracking 

 

Fig. 7.15 In order to make the evaluations comparable, the occluded video is 

synthesised from the original video. 

 

Fig. 7.16 Evaluation of the method by testing on the original and the synthesised 

videos. 

 

The proposed method consists of two threads: tracking and mapping. The importance 

of accurate map construction and map optimisation will be discussed in the last 

section. This section evaluates the tracking thread of the proposed method. Tracking 

in our method includes LP tracking and features detection. Lost tracking happens 

when the LP cannot be found or else when less than 4 features are detected. These 

botherations are caused by the camera’s being far away from the front vehicle, vehicle 

turning and occlusion. Our system is tolerant of temporary lost tracking, where the 

map and estimated pose can be kept up for a period. In our experiment, the tolerance 
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of lost tracking is 60 frames. To demonstrate the feasibility of the tolerance setting, 

we tested the proposed method on the video in which occlusion happened. To make 

the evaluation comparable, we synthesised a video from the video in Section 7.3 with 

four temporary occlusions by blocking the ROIs of the frames, which lasted for 50 

frames (100 frame—151 frame), 55 frames (200 frame—256 frame), 65 frames (300 

frame—366 frame) and 80 frames (400 frame –481 frame). An example of an 

occluded frame is shown in Fig. 7.15. Referring to Fig. 7.16, the red dashed line and 

the blue dashed line represent the estimated distance and the map on the synthesised 

video, respectively, while the red line and the blue line plot the estimated distance and 

the map on the un-occluded video, respectively. When the first and second occlusions 

happened, the estimated distances (red dashed line) and the map (blue dashed line) 

remain unchanging, which was acceptable because the distance would not change 

much over a very short period (around 1 s). After the occlusions end, pose was 

estimated again with the previous map. When the third and fourth occlusions 

happened, the distances remained unchanging. However, the map stayed unchanging 

for the first 60 frames (the set tolerance threshold) while it was initialised again after 

60 frames. Pose was then estimated with the newly constructed map after the 

occlusion ended. Because the map initialisation was complemented very quickly 

(around 15 frames), we observed that the estimated poses (red dashed line) were not 

affected much in the case of occlusion after comparing it to the one (red line) on the 

original video.  

7.8.6 Degree of compliance and the method’s limitations 

As shown in Fig. 7.17, the proposed method consists of 5 main stages: vehicle rear 

detection, map initialisation, feature detection, mapping and pose estimation. A high 

degree of compliance on each stage contributes to the final accurate result. Continuing 

to refer to Fig.7.17, the task at each stage should be to complement correctly: 1, the 

two initial keyframes are detected based on LP detection; 2, the initial stereo 

algorithm complements correctly, 3, more than 4 features are detected in tracking, 4, 

the detected features are correctly matched with map points, and 5, the pose 

estimation algorithm is applied correctly. Though our method is robust at all of these 

stages, as shown by the experimental analysis above, we experienced two types of 

failure: the first is a failure in LP localisation. Though the effective performance of 
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Fig. 7.17 Stage compliance of method. 

 

LP localisation was evaluated in section 7.2, the failure of it is indeed a nuisance as it 

is fundamental to map initialisation and tracking. Fortunately, the failure of LP 

localisation always happens when the front vehicle is far away, where the estimate 

pose of the front vehicle is not especially necessary. The second is a failure of feature 

detection. This always happens at night. Though the LP can be localised at night 

because of the existence of vehicle rear lamps, the performance of feature detection is 

seriously inferior. Therefore, our proposed method is applicable only in daylight. 

7.9 Conclusion 

In this chapter, we propose a novel visual-based system to estimate the 3D pose of a 

front vehicle with an on-board camera. The maximum-dependency and minimum-

redundancy schemes guide the map initialisation and map maintenance, which the 

core part in the whole system to bridge image and real world. Using a combination of 

line segment features and Haar-like features, the LP is quickly localised. The vehicle 
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rear is extracted based on the localised LP. FAST corners are detected on the vehicle 

rear. A map containing a set of reference points is initialised from two frames of the 

extracted vehicle rear at the beginning. After matching the map points with the 

detected feature points, the relative 3D pose between the current vehicle rear and the 

camera is calculated frame-by-frame. When new keyframes are found, new feature 

points would be added into the map. The map is optimised using bundle adjustment 

when no new keyframe is found. The robustness and accuracy of the proposed method 

is demonstrated by experimental results. The AR technique is utilised to make the 

estimated pose in a real-time video visible. With our current method, vehicle rear 

detection and feature points detection constitute two separate steps. In future work, we 

intend to find a quicker and more robust method to combine these two steps. 

Moreover, in order to obtain more accurate and robust pose estimation, an attempt 

will be made to optimise the process of map initialisation and map maintenance.   

With our proposed method, the accurate distance of front vehicle can be obtained in 

real-time. With this information, the driver assistant can alert the driver to reduce their 

speed and thus avoid collisions when the front vehicle is too close. Furthermore, the 

future diver assistant can help drivers to make the right decision with a 3D pose 

estimation of the front vehicle.  
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Chapter 8 Feature Selection with Inference Bag of Features 

Model  

The content in this chapter has been published in (Peng, Luo et al. 2012). 

 

The content in this chapter has been presented in the paper “Inference Bag of Features 

Using Sparse Coding for Image Classification”, had been accepted by the 21st 

International Conference on Pattern Recognition.  

 

8.1 Introduction 

Recent advances in computer vision allow us to robustly detect specific objects in the 

scenes of unrelated clutter, occlusion, and viewpoint changes such as face detection, 

pedestrian detection and vehicle detection.  Object detection is always considered as a 

binary classification problem that discriminates foreground from background. Object 

detection methods always use global features or local features. Global features show 

that objects have some common global characteristics in the whole image and are 

estimated without invoking segmentation or grouping operations. Background 

subtraction with global features is a very popular method when the camera is stable. 

In (Liang, Tieniu et al. 2003), authors construct backgrounds from a small portion of 

image sequences even including moving objects. The moving pixels are then 

extracted by comparing a brightness distribution against a threshold value, which is 

decided by the conventional histogram method. The sliding windows method (Zhang, 

Marszalek et al. 2007), (Liu and Zhang 2011) is a very typical one using local features 

for object detection. Sliding windows detectors are always constructed from local 

features such as Haar-like features, Scale-Invariant Feature Transform (SIFT) 

descriptors and Histogram of Gradient (HOG) descriptors using machine learning 

methods such as Adaboost and Support Vector Machines (SVMs). Constructed 

sliding window object detectors consider small image windows at all locations and 

scales and perform a binary classification for each.  

Further classifications within detected objects are desired in many applications. For 

example, beyond face detection, gender classification is desired in objective 

advertising and video surveillance; beyond vehicle detection, vehicle type 

classification is required by intelligent transportation systems for toll charges and 
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entrance-guarding. A large body of research has investigated the choices of treating 

within-class classification as traditional classification problems. For example, authors 

in (Zhou, Miller et al. 2011) proposed an impressive approach to age classification. 

They extracted image features using a difference of Gaussian filter followed by Radon 

transform. The classifier is afterwards trained with SVM using these features. In 

(Verschae, Ruiz-del-Solar et al. 2006), (Jain, Huang et al. 2005) and (Wu, Ai et al. 

2003), authors utilised Haar-like features, Look Up Table (LUT) features or Radial 

Basis Functions (RBF) with SVM, AdaBoost, or neural-network to classify gender 

based on detected faces; in (Hsieh, Yu et al. 2006), (Loy and Eklundh 2006) and 

(Peijin, Lianwen et al. 2007), for vehicle type classification, authors extracted edge 

features or Gabor features from detected vehicle region and trained a classifier with 

machine learning methods. However, using these methods, we cannot usually achieve 

as good results as what we obtain in object detection. First, these methods are always 

very sensitive to view changes. For example, gender classification methods mentioned 

above are extremely dependent on frontal faces. Second, differences between sub-

classes are much more trivial than that between foreground and background. 

Therefore, even using the same method on the same images, we achieve much lower 

accuracy rate in within-class classification than that in object detection. For example, 

using SIFT-based features in a Bayesian framework on CMU database, correct face 

detection rate is around 81% (Toews and Arbel 2006) but positive gender 

classification rate is around only 74% (Toews and Arbel 2009). On the other side, 

methods using tailor-made representation specific to the sub-classes are popular 

choices. For example, authors in (Zhang and Wang 2011) extracted geometric 

features from faces such as distances between eyebrow and chin, helix and earlobe, 

and inputted these features to SVM to perform gender classification. In (Feris, 

Siddiquie et al. 2012), authors classified vehicle as cars, minivans, van trucks, and 

trucks based on length, width and height of detected vehicles. These object specific 

methods cannot be applied to other problems without major modification.  

Recently, Bag-of-Features (BoF) methods have recently demonstrated impressive 

performance in feature selection. Traditional BoF methods consist of five steps: 1) 

feature detection; 2) build visual words dictionary; 3) represent training image using 

visual words in the constructed dictionary; 4) train classifier; 5) represent testing 

image with visual words dictionary and classify. The concept of BoF is first raised in 
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(Sivic and Zisserman 2003) that inspired from the idea of text retrieval system. In last 

decades, many developments in BoF methods have been made with respect to 

answering three questions: Which feature is better? How do we build a Visual Words 

Dictionary (VDW)? How do we train a classifier? As to the first question, SIFT 

descriptor (Sivic and Zisserman 2003), dense descriptor (Ohbuchi and Furuya 2009), 

colour-based descriptor (Jiang, Ngo et al. 2007), and shape-based (Zhouhui, Godil et 

al. 2010) descriptors are usually utilised. Among them, a SIFT descriptor is the most 

popular one because it is more robust to view changes and varying illumination than 

colour-based and shape-based method; more computational efficient than dense 

descriptor.  

For building VWD and representing images, which can be regarded as two reverse 

procedures, feature-pooling methods are required. These methods combine several 

nearby feature descriptors into a local or global BoF, in a way that preserves task-

related information while removes irrelevant details (Boureau, Ponce et al. 2010). In 

(Sivic and Zisserman 2003), vector quantisation was carried with k-means clustering. 

However, this method is critiqued much as it may cause severe information loss by 

selecting each feature to the nearest visual word, especially for those features located 

at the boundary of several visual words. Though this method had been generalised in 

(Philbin, Chum et al. 2008) by keeping multiple nearest visual words, the number and 

weights of the visual words to be selected for each feature are easy to be determined. 

In (Yang, Yu et al. 2009), authors showed state of the art performance in image 

classification by replacing k-means with sparse coding. Compared with k-means, 

sparse coding automatically learns the optimal visual words dictionary, and 

concurrently assigns optimal weights to the visual words for each local feature. When 

representing images with visual words from VWD using sparse coding, image 

reconstruction can have a much lower error rate due to the less restrictive constraint, 

which is not found in k-means clustering. Furthermore, in (Gao, Tsang et al. 2010), a 

Laplacian sparse coding method was proposed to guarantee the selected cluster 

centres for similar features are also similar. Another strong criticism on traditional 

BoF model is the ignorance of location information of features. To overcome this, one 

extension of BoF proposed in (Lazebnik, Schmid et al. 2006) exploited the spatial 

information of location regions with Spatial Pyramid Matching (SPM) kernel. The 

method partitioned an image into finer segments in different scales, computed visual 
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words representation within each segment, and finally concatenated all 

representations to form a vector representation of the image.   

After representing training images with visual words dictionary, we need to train 

classifiers. There are two basic kind methods for training classifier: generative 

methods and discriminative methods. Simply speaking, generative methods classify a 

testing image by considering every visual word representation of this image 

separately while discriminative methods make classification decisions by regarding 

the visual words representation of this testing image wholly. Bayesian hierarchical 

model (Li and Pietro 2005) is a typical generative method. The method learns a model 

that best represents the distribution of the visual words over each class. For every 

testing image, a class model is found that fits best the distribution of the visual word 

representation of this image. In discriminative methods, SVM (Sivic and Zisserman 

2003), (Yang, Yu et al. 2009) and (Lazebnik, Schmid et al. 2006) is a very popular 

choice. With visual words representation of all training images, SVM found 

hyperplanes that best separate classes. After representing a testing image with visual 

words, these hyperplanes classify the image into a class.   

To our best knowledge, all current BoF methods directly build visual words 

dictionary with feature descriptors extracted from training image. More training 

images are always desired for higher classification accuracy. Increased training data 

raises the size of VWD as well as the testing time. To guarantee processing speed, 

authors fix the amount of features descriptors or the size of VWD (Yang, Yu et al. 

2009), (Lazebnik, Schmid et al. 2006). However, these constraints would miss much 

of the available information in training images. To deal with this dilemma, we 

propose an Inference BoF model that VWD is constructed from a set of inference 

images rather than training images.  

In this Chapter, our proposed inference BoF model for within-class classification can 

exploit very large training database while guaranteeing testing speed. We use three 

sets of images with our method: training images, inference images and testing images. 

We first build VWD from a set of images, which covers all classes and have a fixed 

size. We call VWD as inference dictionary and these images as inference images. The 

inference dictionary is the core of our method. We consider it as a bridge between the 

training database and the testing image. Every visual word in the inference dictionary 
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can be considered as having an affinity with each class. The affinity is a posterior 

probability over each class that is learnt from training data based on a Bayesian 

framework. In testing, a testing image is represented by visual words in the inference 

dictionary. As posterior probabilities of these visual words over classes have been 

learned, the visual words representation of the testing image is classified. We use 

sparse coding for both inference dictionary construction and image representation. 

The complexity in testing is a constant      ) , where   is the size of inference 

dictionary. More training images would increase classification rate but does not slow 

testing speed. 

The rest of this chapter is organised as follows: In Section 8.2, we present the 

overview of our method. Section 8.3 describes inference BoF model. SIFT sparse 

coding is explained in Section 8.4. In Section 8.5, we present the learning procedure 

for inference parameters. In Section 8.6, we test our method on large databases of 

faces as well as comparing with two current popular methods. The chapter is finished 

by a conclusion in Section 8.7.  

8.2 Method overview 

As shown in Fig. 8.1, our method uses three set of images: training images, inference 

dictionary and testing image by two steps: learning and inferring. We first extract 

SIFT descriptors from inference images. Each SIFT is used to generate a feature 

vector that describes the local image region sampled relative to its scale-space 

coordinate frame (Zhou, Yuan et al. 2009).  The inference images cover all classes 

and are with a fixed amount.  All these SIFT vectors are then quantised using sparse 

coding into a visual word dictionary, which we name as inference dictionary. 

Secondly, we learn a posterior distribution over each class for every visual word in 

inference dictionary from training images. Every visual word in inference dictionary 

can be thought of having an affinity with each class. This affinity is learned in 

Bayesian framework as posterior distribution. Finally, we classify a testing image by 

inferring to the inference dictionary. The SIFT descriptors extracted on a test image 

are approximated by visual words in inference dictionary using sparse coding. The 

posterior distributions over all classes of chosen visual words then determine the class 

of the testing image.  
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Fig. 8.1 Overview of Inference BoF method. 

 

8.3 Inference BoF model 

In current BoF methods, VWD is constructed from training data. The drawback of 

this method is complexity maybe hardly afforded when using a huge training data. On 

the other hand, we always desire more training data for higher accuracy. Our 

proposed inference BoF model addresses this problem. An inference VWD is 

deployed between testing images and training images. The complexity in testing 

becomes a constant, as we fix the size of the inference dictionary.  More training 

images would lead to a higher classification rate but does not change the testing time.  

The inference dictionary is constructed from a relative small set of images, which we 

call inference images. These inference images are unlabelled but cover all classes. In 

our experiment, we utilise 150 male and 150 female images as inference images in 

gender classification. SIFT descriptors are extracted from these images. SIFT 

descriptors are 16*16 pixel patches. Consider a set of all these descriptors a bag of 

features. It is impossible to use the bag directly due to the huge amount of features in 

this bag. In order to compress this bag, we need to cluster near features. Recently, 



149 

 

sparse coding is proven to outperform k-means method for cluster similar features. 

After building up visual dictionary using sparse coding, every training image and test 

image are represented by visual words in this dictionary using sparse coding again. 

We detail sparse coding in building visual dictionary and representing test images in 

next sections.  

Every visual word chosen can be thought of as having a different affinity with each 

class. We learn these affinities during learning period with a huge training set. These 

affinities are represented as a set of parameters associated with each class. The 

learning process for these affinities is described in Section 8.5. After inferring to the 

visual dictionary, SIFT descriptors of a test image are approximated by visual words 

from inference dictionary. The affinity of every chosen visual word for each class is 

used to determine posterior probabilities of the test image over classes. The inferring 

process in testing is detailed in Section 8.6. 

8.4 Sparse coding in building dictionary and presenting 

k-means clustering is widely used for VWD construction in BoF model. Let   be a set 

of SIFT descriptors, where   [           ]. In k-means method, the SIFT set is 

partitioned into K clusters    [          ] . The centres of these clusters   

[           ] are visual words, which from the dictionary. As a hard assignment 

method, k-means assigns each local feature to one cluster centre only; the weight 

contributing to that centre is 1. k-means aims at finding these cluster centres and 

minimising the inter-class error as following: 

  ∑ ∑ ‖     ‖
 

     

 
      

                                       (8.1) 

The optimisation for the above formulation can be re-formulated into a matrix 

factorisation problem with a matrix of cluster indices,   [          ], 

  ∑ ‖      ‖
  

      
                                              (8.2) 

                  )    |  |                                                                 

where        )    is a cardinality constraint, meaning that only one element of    

is nonzero, |  | is the summation of the absolute value of each element in   ,      

means that all elements of    are nonnegative. After the optimisation, the index of the 
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only nonzero element in    indicates which cluster the SIFT    belongs to. In the 

phase of building visual dictionary  , the optimisation (2) is solved with respect to 

both   and  . After dictionary   built up, image is represented by visual words   . In 

the phase of representing image, optimisation (2) is solved with respect to both   only 

and with a new set of    .  

However, the constraint that each SIFT only contributes to one visual word is too 

strict. This constraint could cause severe information loss, especially for those 

features located at the boundary of several clusters. To this end,        )    is 

removed for soft assignment, which optimally selects cluster centres for each SIFT. 

Moreover, to avoid each SIFT to be assigned to too many clusters, a sparse constraint 

on    is used that enforces     to have a small number of nonzero elements. The 

optimisation problem is turned into a sparse coding problem: 

  ∑ ‖      ‖
  

      
     ‖  ‖                                  (8.3) 

           |  |                                                                                                         

Equation (3) is not convex for   and   simultaneously, but it is convex for   when   

is fixed and it is also convex for   when   is fixed. We optimise   and   

alternatively. Fixing    , the optimisation over   can be solved as a least square 

problem with quadratic constraints: 

  ‖    ‖ 
 

 
    

           |  |                                    (8.4) 

The optimization of (4) is done by Lagrange dual in [20]. When   is fixed, we used 

the linear regression algorithm in (Lee, Battle et al. 2007) to optimize over each 

coefficient    individually: 

  ∑ ‖      ‖
  

    
     ‖  ‖                              (8.5) 

Similar to k-means method, we need to optimise (3) over both   and  when building 

the visual dictionary. When representing training image or test image with visual 

words, we need to optimise (3) with respect to   only.  
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8.5 Affinity learning 

As explained above, to overcome the problem that a lot of training data slows testing 

time, we construct an inference visual dictionary from a relative small set of 

unlabelled inference images. Every visual word has an affinity with each class. These 

affinities are learned from labelled training images, which are with large amount and 

are different from inference images.  

SIFT descriptors are detected on training images. We denote the descriptor from the 

   training image of the     class by    . Using sparse coding       is assigned to a 

visual word in dictionary   [           ]         ). The affinity of a visual 

word with class is denotes as     , which represents the tendency for the visual word 

  to be picked when considering SIFT descriptors of class   . 

In training period, we denote all SIFT descriptors belonging to the     class training 

images that as    . When     are picked for a visual word   , we learn a posterior 

distribution         ) using Bayes’ rule: 

       ⁄ )  
       ⁄ )     )

    )
                                    (8.6) 

To simplify notation, we describe this process for just one of the   visual words and 

one of   classes and drop the indices   and  . Equation (6) is presented: 

    ⁄ )  
    ⁄ )   )

   )
                                           (8.7) 

where    [          ] is all descriptors from training data for this visual word and 

this class;    is the parameter associated with this visual word for this class. 

Substituting   with   into equation (7), we get a posterior distribution      ⁄ ) over 

the affinity  : 

    ⁄ )  
    ⁄ )   )

   )
                                       (8.8) 

The likelihood part is a categorical distribution over the visual word that is one 

sample from a multinomial. We get: 

    ⁄ )   ∏      ⁄ ) 
    ∏    

 ∏    )
   

   
 
             (8.9)                            



152 

 

where    is the amount of all descriptors detected from training data and    is the 

number of all visual words in the inference dictionary.    is defined as: 

   ∑  ‖  ‖ 
 
                                              (8.10) 

             ∑‖      ‖
 

 

   

 
     ‖  ‖               |  |               

where  ‖  ‖ , as described in equation (3), are cluster membership indicators with a 

L1-norm regularisation.   is the constructed inference VWD.    is SIFT descriptors 

extracted from training images. In other words,    is the frequence that visual word    

is picked up during training process.  

We choose a Dirichlet prior over parameters   in equation (8) as it is conjugate to the 

categorical likelihood: 

   )  
  ∑    )

∏     ) 
 ∏    )     

                                   (8.11) 

where    represents a Gamma distribution and              are the parameters of 

this Dirichlet distribution. These parameters are learned from a validation set. 

Substituting the likelihood part (9) and conjugate prior (10) into (8), we get a form of 

a Dirichlet distribution to describe posterior distribution over visual words’ affinity: 

    ⁄ )  
  ∑        )

∏        ) 
 ∏    )        

                        (8.12) 

We calculate the distribution for each visual word with respect to each class. 

8.6 Inferring in testing  

For every unknown testing image, we approximate SIFT descriptors detected on this 

image with visual words in inference dictionary. Every visual word has an affinity 

with classes that has been learned from training images. Chosen visual words 

determine the class of testing image. We call this process inferring.   

After detecting SIFT, we represent a test image   as a set of SIFT descriptors 

  [          ] .  The possible classes are    [          ] and all training 

SIFT descriptors are   [          ]. The posterior probability over class label   

for a test image is: 
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     |   )                                      (8.13) 

We get a further expression with the assumption every SIFT descriptor is independent.  

     |   )  
∏     |      )     ) 

   

   )
                (8.14) 

After obtaining the closest match from visual word dictionary using sparse coding, we 

substitute    with    into the likelihood part of (12). We take a Bayesian method and 

marginalise over model parameters, so the likelihood terms become: 

 (  |     )       |     )      | )   | )             (8.15)                          

   | )                                                      (8.16) 

where   , as explained above, represents the probability for a visual word to be 

chosen in training process. We substitute (12) and (16) into (15): 

 (  |      )       
  ∑        )

∏        ) 
 ∏    )        

         

                          
  ∑        )

∏        ) 
 ∏    ) ‖ ‖          

                     (8.17)                    

Turning the term inside the integral to a complete Dirichlet distribution which sums to 

one, we get: 

 (  |      )  
  ∑        )

∏        ) 
 
∏    ‖ ‖       ) 

  ∑   ‖ ‖        ))
 

     

∑       ) 
             (8.18) 

8.7 Experiment and discussion 

In this section, we implement and evaluate three BoF methods on challenging tasks: 

gender classification on images of FERET database (Facial Recognition Technology 

Database) (Phillips, Moon et al. 2000). Three BoF methods are: 

1. Inference BoF: our proposed method that uses an inference dictionary to infer 

classes’ probabilities of testing images in a Bayesian framework.  

2. Bayesian BoF: calculate class probabilities of testing images in a Bayesian 

framework, without inference images. 

3. ScSPM BoF: very impressive discriminative method proposed in (Yang, Yu et 

al. 2009) that uses SVM linear kernel on spatial-pyramid pooling.  
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All these three methods use sparse coding in the phases of visual world dictionary 

construction and image representation.  

8.7.1 Data collection 

All training and testing image for gender classification are based on the standard, 

publicly available colour FERET database (Phillips, Moon et al. 2000). The FERET 

database consists of a total of 11338 facial images, which are collected by 

photographing 994 subjects of various ethnicities, age, sex, acquired from various 

viewpoints, illumination conditions, with/without glasses, etc. We build a database of 

4970 images, each subject with 5 images, which are chosen at viewpoint of 0, 15, 22.5, 

45, and 67.5 degrees. The male: female ratio in our database is approximately 3:2 

(2955:2015). Due to other objects such as background, clothes, hair, etc. in FERET 

images, we need to extract face images. Faces are detected in two steps: first, we used 

a face detector on all images in our database. Thanks to the simple scenario of FERET 

images for detection and localisation, we do not get many mis- or false detections. 

Second, we manually crop the missed faces, most of which are with viewpoints of 45 

or 67.5 degrees.  

We standardized all extracted face image in following five steps: 1, transfer all images 

into greyscale; 2, resize all images into 120×120 pixels; 3, band-pass filter all images; 

4, smooth all images using a Gaussian function centred on the image; 5, normalise all 

images to have zero mean and unit standard deviation. Fig. 8.2 shows some face 

image examples. 

8.7.2 Parameters setting 

In this section, we investigate sparse coding parameter   in equation (3) and Dirichlet 

parameters              .   Sparse coding parameter     enforces the sparsity of the 

solution: the bigger    is, the more sparse the solution will be. As (Yang, Yu et al. 

2009) indicated, keeping the sparsity around 10% yields good results. Therefore, for 

both training and inferring, we simply fixed   to be 0.3~0.4 and the mean number of 

supports is around 10. 
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Fig. 8.2 Face image collection. Experimental images that are used in this chapter 

are from the Facial Recognition Technology (FERET) database (Phillips, Moon 

et al. 2000).  

 

 

Fig. 8.3 Classification rate varies with changing Dirichlet distribution parameter, 

which is noted as α. 

As a very common case of Dirichlet distribution, we constrain all of the elements 

making up the parameter vector              to have the same value. In order to 

learn the best   for classification, we used a training set of 1000 male and 1000 

female images, a validation set of 200 male and 200 female images, and an inference 

dataset made up of 100 male and 100 female images. We empirically chose   from 1 



156 

 

to 10. From Fig. 8.3, the classification performance jumps significantly from 1 to 3 

but then declines. We choose   as 3. This result also shows the advance of the 

Baysian Inference framework, as the maximum-likelihood solution can be seen as a 

special case of Bayesian inference when    .  

8.7.3 Visual word dictionary size 

The visual word dictionary is constructed from extracted SIFT features. Intuitively, 

we obtain a higher classification accuracy when we extract more SIFT features from 

more training images. However, classification time cannot be afforded when the size 

of the dictionary is extremely large. To address this problem, most current methods 

fixed the amount of features or the size of dictionary.  In (Lazebnik, Schmid et al. 

2006), the authors fixed the dictionary size to 200 and 400. In (Yang, Yu et al. 2009), 

the authors used 50,000 SIFT features to train dictionaries of three sizes: 256, 512 and 

1024, separately. They found their method achieved the best performance when the 

dictionary contained 1024 visual words. The cost of fixed-size SIFT descriptors and 

dictionary is classification accuracy.  

Our Inference BoF method addresses this problem. We use a high number of training 

images to guarantee a high classification rate while using a relatively small set of 

inference images to constrain the size of the dictionary.  

8.7.4 Gender classification using inference BoF 

For gender classification, we used a training set of 1800 male and 1800 female images. 

The inference images set consists of 150 male and 150 female images and the testing 

set is made up of 605 male and 402 female images. All images come from our faces 

database. As shown in Table 8.1, we implemented the three methods on the same 

images.  

Table 8. 1 Implement three methods on the same images for gender classification. 

Methods Training Images Inference Images Testing Image 

Inference Bof 1800 male, 1800 female 150 male, 150 female 605 male, 402 female 

Bayesian BoF 1800 male, 1800 female N/A 605 male, 402 female 

ScSPM BoF 1800 male, 1800 female N/A 605 male, 402 female 
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Table 8. 2 The effect of dictionary size on Inference method. 

SIFT(Training) SIFT(Inference) Dictionary 

Size 

Dictionary 

Size 

Dictionary 

Size 

Dictionary 

Size 

252,019 21,037 256 512 1024 2048 

  65.52% 71.25% 85.60% 80.54% 

 

Table 8. 3 The effect of dictionary size on Bayesian BoF method  and ScSPM BoF 

method. 

 SIFT 

(Training) 

SIFT 

(Inference) 

Dictionary 

Size 

Dictionary 

Size 

Dictionary 

Size 

Dictionary 

Size 

   1024 2048 4096 8192 

Bayesian 

BoF 

252,019 N/A 65.18% 68.20% 70.62% 75.5% 

ScSPM 

BoF 

252,019 N/A 70.20% 81.50% 85.14% 72.41% 

 

Table 8. 4 Computation complexity comparison. 

 Inference BoF Bayesian BoF ScSPM BoF 

Average Testing Speed 830 ms/ frame 2400 ms/frame 1300 ms/frame 

 

With the Inference BoF method, the dictionary is constructed from inference images. 

As shown in Table 8.2, we extracted 252,019 SIFT features from 3600 training 

images and 21,037 SIFT features from 300 inference images. We tried four dictionary 

sizes: 256, 512, 1024, and 2048. Inference BoF achieves best performance when the 

dictionary size is 1024.  

In Bayesian BoF and ScSPM BoF, dictionary is constructed from training images. As 

shown in Table 8.3, we extract the same amount of SIFT feature from training images 

as that in Inference BoF. As we extracted many more SIFT features from training 

images that that from inference images, we tried four bigger dictionary sizes for 

Bayesian BoF and SVM BoF: 1024, 2048, 4096, and 8192. Bayesian BoF achieve 
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best classification rate with the dictionary size 8192. ScSPM BoF obtains best 

performance when the dictionary size is 4096.  

As shown in Table 8.4, the best performances of Inference BoF and ScSPM BoF are 

better than that of Bayesian BoF. There is no great difference between Inference BoF 

and ScSPM BoF. However, the processing speeds are discriminative. The dictionary 

size is 1024 when our method achieves best performance. The processing time for an 

incoming image in classification is        ). On the other side, the processing time 

is       ) and       ) for Bayesian BoF and ScSPM BoF, respectively, when they 

achieve best classification rate.  

8.7.5 Computation complexity evaluation 

As explained in Section 8.4, Inference BoF, Bayesian BoF and ScSPM BoF achieved 

their best performances when the dictionary sizes are 1024, 8192 and 4096. Bigger 

size of VWD leads more testing time. In order to confirm this, we compared the 

testing time when three methods achieved their highest classification rate. We tested 

three methods on the same 1007 faces images. As Table 8.4 indicates, our proposed 

method processed testing images at a speed of around 830 ms/frame. The average 

testing speeds of Bayesian BoF and ScSPM BoF are around 2400ms/frame and 

1300ms/frame, respectively. We calculated the testing time from input image into 

methods to make classification decision. We implemented three methods in C++ on a 

desktop with Intel(R) Duo CPU 3.00GHz 2GB memory. Please refer to the 

supplementary video to watch the demonstration of gender classification with our 

method. 

8.8 Conclusion  

In this chapter, we proposed an inference BoF method for selecting the optimal set of 

features, which is the aim of minimum-redundancy scheme. The method constructs 

visual words dictionary from inference images instead of training images in 

traditional methods. The size of inference dictionary is fixed when we don’t change 

the amount of inference images. This method dramatically improves the scalability of 

training data and the speed of testing, and improves the classification accuracy. Our 

experiments on the changeling task—gender classification, demonstrated the 

effectiveness of this method.  
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Chapter 9 Discussion and Future Work 

9.1 Summary 

The primary focus of this thesis is our proposed scheme of feature selection for 

vision-based applications in an ITS. Feature selection schemes with maximum 

dependency and minimum redundancy were presented. In extensive experiments on 

large real-world datasets, we demonstrated a significant improvement in performance 

over state-of-the-art methods for all ITS applications considered in this thesis, i.e., 

license plate detection, vehicle type classification, and pedestrian counting. Finally, 

we proposed the inference Bag-of-Features (BoF) method for feature selection that 

outperformed the traditional BoF in terms of both the processing time and accuracy.  

Chapter 1 introduced cognitive systems with machine learning into ITS system. By a 

set of algorithms than can retain knowledge from past interactions with the 

environment, transform this knowledge into experience, and plan future actions 

accordingly, the cognitive systems enabled prior perceived potential and amend 

behaviours with respect to traffic. Cognitive systems exploited the intelligence that 

was accumulated through the exchange of information among ITS nodes: vehicles, 

drivers, pedestrians, and infrastructure. Hence, the efficient and lossless exchanging 

of information was extremely critical. To avoid noise and guarantee the effectiveness 

of the information transfer in a cognitive system, finding suitable selected features 

was critical. In Chapter 2, we proposed the feature selection scheme of maximum 

dependency and minimum redundancy, which guided the development of visual 

applications in an ITS. In Chapter 3, we presented a comprehensive review that 

involved state-of-the-art feature selection methods utilised in the ITS.  In Chapter 4, 

the outline and main contributions of this thesis were presented. 

To evaluate the advancement of our feature selection scheme with these ITS 

applications, we implemented the experiments on a large-scale real-world dataset in 

Chapter 5 to Chapter 8. We obtained significant performance boosts over previous 

state-of-the-art methods for license plate detection, vehicle type classification, 

pedestrian counting, 3D pose estimation of the front vehicle, and face recognition. 

Chapter 5 presented license plate detection and vehicle type classification with a 

traffic surveillance camera. We utilised a combination of line segment features and 
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Haar-like features to achieve fast and robust license plate detection. In vehicle type 

classification, we showed the advance of our proposed multiple eigenspaces over a 

traditional eigenspace in selecting feature subsets. Every vehicle front was 

represented by eigenvectors after being projected into multiple eigenspaces. A higher 

classification rate was produced with our method. In Chapter 6, hybrid features that 

were low-level and high-level features were extracted for pedestrian counting with a 

linear SVM. Rather than detecting the pedestrians directly, we transferred the 

pedestrian counting problem to a classification problem. In Chapters 5 and 6, we 

mainly addressed the cognitive systems with a fixed camera. In Chapter 7, we 

implemented a feature selection scheme with a more complex cognitive system, the 

intelligent vehicle. With an on-board camera, we proposed an application to estimate 

the real-time position of the front vehicle toward a driver assistance system. The 3D 

position of the front vehicle on the road was calculated by a map, which decoded the 

relationship between the real world and the 2D features. In Chapter 8, we improved a 

popular feature selection method---Bag-of-Features using our scheme and 

demonstrated the improvement by addressing a challenging ITS problem that gender 

recognition of pedestrians.  

9.2 Discussion 

According to the proposed maximum dependency feature selection strategy, features 

should be selected with full consideration of the aim of the applications, the 

environment, and the processing speed requirement. We grouped features that were 

typically utilised in an ITS into three groups: low-level features, high-level features, 

and hybrid features (see Tables 3.1 and 3.2). Low-level features were those basic 

features that could be extracted from an image without any information about the 

spatial relationship, such as the pixel, edge and localised features. These features can 

describe subtle details about objects.  
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Fig.9. 1 Low-level features represent object by exploiting local neighbourhood 

properties. They are able to capture subtle characteristics but prone to include 

outliers. (a) In Chapter 7, FAST corners were extracted to initialize the map. (b) 

In Chapter 8, SIFT descriptors were utilized for face recognition.  

 

In Chapter 7, the 3D position of the front vehicle was achieved by calculating the 

relationship between the real world and the features. Because the texture 

characteristics of the vehicle rear were needed and the extremely unstable background, 

FAST corners were selected as discrimination and robustness of this feature. The 

motivation of choosing FAST corners was that they were calculated extremely fast 

and represented the vehicle rear in sufficient detail. As shown in the Fig.9.1 (a), the 

texture in detail was essential for establishing the relationship between 2D image and 

3D real world. In Chapter 8, another low-level feature, SIFT descriptor, was utilized 

for constructing the visual words dictionary because of its robustness to view change 

and illumination vary. The image of a person’s face exhibits many variations which 

may affect the ability of a computer vision system to recognize the gender. It was due 

to the characteristics of a person, such as age, ethnicity and facial expressions, and the 

accessories being worn. Geometric-based and appearance-based methods hardly 

capture all these variations. We utilized the SIFT descriptors to represent the face as a 

collection of features. It made our method to capture the local characteristics as many 

as possible.   

We have demonstrated the advanced performance of the utilized low-level features 

through the experiments of Chapter 7 and Chapter 8. On the other hand, high-level 
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features were incompetent for these two tasks for two reasons: first, high-level 

features were not suitable for capturing local characteristics. Low-levels features 

represented the objects in a collection of points or patches by exploiting local 

neighbour properties, such as the FAST corners and SIFT descriptors in Chapter 7 and 

Chapter 8. High-level features concerned finding shapes of objects. For example, 

human face can be recognized automatically using high-level features. The major face 

features such as the eyes, the ears, and the nose were extracted. To find them, we 

could use their shapes: the white part of the eyes was ellipsoidal; the mouth can 

appear as two lines, as do the eyebrows. These features were enough to recognize 

human faces from other objects. However, they cannot discriminate the male face 

from female one that required much more subtle characteristics. Second, because 

high-level features were based on the spatial information of targets, they were 

sensitive to viewing changes. In a planar image an object viewed from a different 

angle will appear different, but points which represented it still appeared in a similar 

arrangement. In Chapter 7, the relative view of the front vehicle to the camera 

changed frequently. Consequently, the spatial information of vehicle rear varied 

constantly. The high-level features cannot be extracted accurately in this case.  

However, high-level features extraction process can be viewed similar to the way we 

perceive the world. More complex objects can be decomposed into a structure of 

simple shapes. As aforementioned discussion, the human face could be decomposed 

into a structure of nose, eyes, eyebrows, and mouth. The vehicle could be recognized 

as a combination of wheels (circles), frames (polygons), and lamps (ellipses). In many 

applications, analysis can be guided by the way the shapes are arranged. In Chapter 5, 

by observing the pedestrian and pedestrian groups in the surveillance videos, which 

were ground-based in the scene, shape-related features were extracted to classify the 

number of pedestrians in each foreground blob. It was worth noting that many high-

level features were produced from low-level features, i.e., the shape of an object was 

described by a collection of low-level features. For example, HOG was a very 

successful feature for pedestrian detection. It described the pedestrian’s shape by 

counting the occurrences of the gradient orientation in localised portions of an image. 

Moreover, hybrid features that combined low-level features and high-level features 

were usually chosen in an ITS application to take advantage of both of the two 

methods. In Chapter 5, line segment features were extracted to represent the texture 
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appearance of license plate which were generated by detected edges on license plate. 

In addition, the combination of line segment features and Haar-like features was used 

to detect license plate.   

As discussed before, the computation load of single low-level feature was low. 

However, in low-level feature based method, objects were represented by a collection 

of low-level features. The computation load increased with the increasing amount of 

features. When multiple objects were targeted in the scene, a slide window method 

was utilized. Usually, a scalable window slid through the whole image. For each 

window, the low-level features were extracted. The processing speed became slow. 

Because the amount of high-level features were usually relatively small, such as three 

line segment features in Chapter 6 and nine foreground blob features in Chapter 7, the 

processing speed of the collection of these features was fast. Hence, in the application 

of multiple objects, high-level features were usually preferred.  

After extracting suitable types of features, reducing the size of the feature set was 

another important step according to the proposed minimum redundancy scheme.  To 

achieve the best performance, the optimal set of features was in demand that included 

the most informative features while excluding the redundant features. The choice of 

feature subset selection method mainly based on the features, which have been 

extracted from objects in the last step. In Chapter 7 and Chapter 8, low-level features 

were extracted without considering spatial information. As shown in Fig. 9.1, some 

FAST corner features which were outside the vehicle rear were included while many 

SIFT features which were outside the face were detected. These outliers needed to be 

excluded.  In Chapter 7, after extracting FAST corners to build the map that recorded 

the relationship between the real world and 2D image, the Levenberg-Marquardt 

algorithm was utilized to reduce the size of feature set in map maintenance.  

Bag-of-Features (BoF) outperformed many other approaches in object classification. 

However, the processing time of the BoF methods increased substantially with the 

additional training data. In Chapter 8, we addressed this problem by proposing an 

inference bag-of-features method. Traditional BoF methods constructed a visual word 

dictionary from the training images. A substantial amount of time was required for 

both training and testing for large-scale training data. A fixed size for the VWD in the 

current methods guaranteed the processing speed but would miss the available 
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training data. Our method addressed this dilemma by introducing the inference 

algorithm. VWD was constructed from inference images, the number of which was 

fixed. Posterior probabilities of visual words over classes were learned from training 

images in a Bayesian framework. 

On the contrary, high-level features were relevant to objects because of the way they 

were generated. The optimal feature sets were usually generated by ranking the 

significance of features. In Chapter 5, the line segment features with Harr-like 

features were weighted by AdaBoost during the classifier training. Top eigenvectors 

were selected by PCA method. In Chapter 6, the extracted features of foreground 

blobs were scored by SVM. The top ranked features were highly relevant to the 

objects that performed better than other features in the predication task.  

 

 Maximum Dependency Scheme Minimum 

Redundancy 

Scheme  

 Input Output/Input Output 

 Sub-class 

recognition  

View 

Change  

Real Time 

Requirement 

Multiple 

Targets 

Low-

level/High-

level 

/Hybrid 

features  

Optimal 

feature set 

selection 

Vehicle Type 

Classification 

No No No No Hybrid-- 

Line 

segment 

features, 

Haar-like 

features, 

Eigenvectors  

AdaBoost, 

PCA 

Pedestrian 

Counting  

No  No  Yes Yes High-level-- 

Blob 

SVM 
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features 

Pose 

Estimation of 

front Vehicle  

No Yes Yes No Low-level-- 

FAST 

corners  

Levenberg-

Marquardt 

Pedestrian 

Gender 

Classification  

Yes No No No Low-level-- 

SIFT 

descriptors  

Inference 

Bag of 

Features 

Table 9. 1 ITS applications under the guidance of maximum dependency and 

minimum redundancy scheme.  In the first step, several factors such as 

application environment and object character were input while extracted 

features were output. In the second step, the extracted features were input while 

the feature selection method was the output. 

 

In summary, the best performance of ITS system can be expected with the best 

optimal feature set. As shown in Table 9.1, the achievement of best optimal feature 

set included two steps: extracting most suitable features and subset selection, which 

were under the guidance of maximum dependency and minimum redundancy. In the 

first step, several factors such as application environment and object character were 

input while extracted features were output. In the second step, the extracted features 

were input while the feature selection method was the output.  By referring to the 

aforementioned discussion, high-level features were suitable for real-time response 

and multiple-targets task. But they were not expressive in the task of sub-class 

recognition because of their poor ability of representing local characteristics. Low-

level features performed well in the task of sub-class recognition and view change. A 

collection of low-level features allowed for recognition where view of object changed 

or part of object was obscured, by exploiting local neighbourhood properties. In 

addition, the combination of low-level and high-level features could boost the 

performance in some tasks by utilizing the advantages of both of them. In the second 

step, the minimum redundancy scheme aimed at an optimal feature set, which was 

formed from the extracted features in last step. Usually a substantial amount of low-

level features was extracted. Outliers would be excluded in this step. On the other 

hand, because high-level features were generated based on the spatial information of 

objects, they would be ranked according to their performance in predication rather 

than be excluded.  
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9.3 Future work 

There is significant potential to improve and extend the algorithms presented in this 

thesis. Assumptions such as a static background, which was required for the 

surveillance system in Chapters 5 and 6, limited the applications and robustness 

significantly. Background models worked poorly when the surveillance cameras were 

shaking. The surveillance systems in general could benefit from moving away from 

the use of background to more generic approaches. Full scene understanding and 

object recognition without strong assumptions are undoubtedly more difficult tasks, 

but emerging technology that masters these tasks will enable more applications.  

 

 

Fig.9. 2 The influence of scene context on object recognition. The recognition of 

the highlighted pedestrian and the car become much easier with the 

consideration of scene context. 

In human visual processing, knowledge of scene context has a tremendous effect on 

object recognition. Objects do typically not appear in isolation but interact actively or 

passively with the environment. In Figure 9.2, it is hard to recognise the pedestrian 

and the car without considering the scene. Once scene context is available such as the 

relative position of the objects to the road, the recognition becomes much easier. Most 

current ITSs do not consider an image as a whole but operate locally on the 

interesting objects such as pedestrian and vehicle. Significant performance boosts 
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could be expected from incorporating a model of contextual feedback on object 

recognition and hypotheses generation.  

One of the strongest critiques of the traditional BoF was that it disregarded 

information regarding the spatial layout of the features. To address this problem, 

(Lazebnik, Schmid et al. 2006) proposed a spatial pyramid matching method, and 

(Yang, Yu et al. 2009) developed this method using sparse coding. Future work 

concerning integrating the spatial information of objects into our inference BoF 

method is necessary and highly encouraged. 
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Appendix High-resolution Figures 

 

 

 

Fig. 6.9 Pedestrian counts by proposed method on three videos. 
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Fig. 6.10 Comparison evaluation of three methods by testing on PETS2009_1. 
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Fig. 6.11 Comparison evaluation of three methods by testing on PETS2009_2. 
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Fig. 6.12 Comparison evaluation of three methods by testing on TownCenter. 
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Fig. 6.13 Evaluation of counting improvement by adaptive tracking. 

 


